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Abstract

Software expressing intent and justifying creative deci-
sions are important considerations when building sys-
tems in the context of Computational Creativity. How-
ever, getting software to express subjective opinions
like simple preferences is difficult without mimick-
ing existing people’s opinions or using random choice.
In this paper, we propose an alternative way of en-
abling software to make meaningful decisions in small-
scale subjective scenarios, such as choosing a favourite
colour. Our system uses a combination of metrics as a
fitness function for evolving short pieces of code that
choose between artefacts. These ‘preference functions’
can make choices between simple items that are neither
random nor based on an already existing opinion, and
additionally have a sense of consistency. We describe
the system, offer some example results from the work
and suggest how this might lead to further developments
in generative subjectivity in the future.

Introduction
Computationally creative software usually makes many de-
cisions in the process of producing an artefact. These de-
cisions are often in the context of problems for which ‘no-
tions of optimality are not defined’ (Eigenfeldt, Burnett, and
Pasquier 2012) and so there is no definitive equation or ob-
jective measure that can guide them to the ‘best’ answer. As
a compromise, the developers of such software provide ways
to guide the software in making these decisions: sometimes
by providing predetermined heuristics; sometimes by allow-
ing the software to create models trained on decisions made
by people; sometimes using random chance.

In many of these creative decisions there are no right or
wrong answers. For example, in (Veale 2013) a system
writes poetry by first generating several potential metaphors
to work from. These metaphors are all considered good can-
didates that could produce poems – the system selects one
at random, because it has no meaningful reason to choose
between them. This is a small decision within a much larger
system, and in many ways it is insignificant compared to the
larger creative act the software performs. In this paper, how-
ever, we argue that there are two important consequences
to relying on random choice or predetermined heuristics for
decisions such as this. Firstly, we prevent our software from

intelligently discussing these choices in framing informa-
tion, and as a result miss out on opportunities to add value to
the artefacts created or raise the perception of our software
as creative (Colton, Charnley, and Pease 2011). Secondly,
when observers discover or are informed that these choices
are made due to external factors or randomness, then we
contend that their perception of the software as creative is
lowered significantly, even if the decision in question seems
trivial.

Software is not human – it does not have emotional attach-
ments, it does not have childhood memories, it does not have
biochemical reactions. This does not mean, however, that
we must shy away from providing software with the ability
to make and justify subjective decisions. If the claims that
it makes about its preferences are consistent, defensible and
reasonable, we believe that this will add to the perception of
the software being creative without deceiving the observer
about the software’s lack of humanity.

We describe here a system that can generate simple snip-
pets of code, which we call preference functions, that take
as input two objects of some type and express an ordering
on them – in other words, they express what amounts to a
preference between the two objects. This system works by
evolving code segments, using a particular combination of
metrics, which we also introduce here, as a fitness function.
These metrics have been carefully designed to be domain ag-
nostic, and to limit our influence as designers on the output
the system ultimately produces in terms of the subjectivity it
expresses. While this process is not perfect, we believe this
work represents an encouraging first step towards software
making meaningful subjective decisions. To illustrate this,
we provide several examples of generated functions in dif-
ferent domains, including colour selection and videogame
design, that highlight how this technique might be used in
software. We then discuss what further work is needed to
integrate this technique into the framing and context of com-
putationally creative software.

Background
Framing and Subjectivity
Framing is the name given to the process by which software
produces text or perhaps other content to provide context
to a generated artefact. Thus far in Computational Creativ-
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ity this generally takes the form of a ‘wall text’-like com-
mentary that appears alongside the artefact in order to help
explain the creative process, as in (Colton, Goodwin, and
Veale 2012). According to (Colton, Charnley, and Pease
2011), the authors claim that the act of framing can increase
the ‘value’ of generative acts undertaken by software in sev-
eral ways, one of which is ‘by providing calculations about
the concepts/expressions [in an artefact] with respect to the
aesthetic measures’. In (Colton, Goodwin, and Veale 2012),
for example, the software generates commentaries which ex-
plains why it chose particular poetic styles or focused on
particular words.

In (Charnley, Pease, and Colton 2012), the authors con-
sider three particular aspects of a creative work that framing
can tackle: motivation, intention and process. The authors
summarise these as ‘Why did you do that?’, ‘What did you
mean when you did that?’ and ‘How did you do that?’ re-
spectively. Of motivation, they say:

[it is] distinctly human in nature and it currently makes

limited sense to speak of the life or attitudes of software

in any real sense.

However, the authors also point out later that ‘framing need
not be factually accurate’, and that ‘the motivation of a soft-
ware creator may come from a bespoke process which has
no basis in how humans are motivated’. We claim that it
is reasonable for software to possess arbitrary or subjective
preference about elements of its creative process, for the pur-
poses of framing and justifying its motivation and output.
The technique we outline in this paper has no basis in how
people are motivated, as in the quote above, but it does aim
to offer a form of motivation for software’s actions that is
satisfying to the observer and may withstand limited inter-
rogation through framing or even dialogue.

Randomness and Believability
In (Colton and Wiggins 2012) the authors define Computa-
tional Creativity as the creation of systems which ‘exhibit
behaviours that unbiased observers would deem to be cre-
ative’ (paraphrased). The mention of unbiased observers
is crucial to the definition, since Computational Creativity
is highly reliant on the perception of creativity. A com-
mon criticism of creative software is that the designer of
the software is a major contributor to the software’s creativ-
ity. (Colton 2009) proposes a process of ‘climbing the meta-
mountain’ to overcome this, whereby creative software is
iteratively improved to remove the influence of the original
designer on the software, instead adding in new subsystems
which take the place of the designer’s involvement and allow
the software to make the same decisions for itself.

The danger of removing designer influence for removal’s
sake is that the system that replaces the designer’s involve-
ment may not actually increase the perception of creativity.
There is anecdotal evidence to suggest that people distrust
the actions of software, even in cases where the software
is proactively explaining that its decisions were intelligently
motivated. The work described in (Cook and Colton 2014),
for example, provoked an angry response from one member
of the public who wrote ‘AI, or just basic random number

generation?’ in response to the software framing its choice
of a piece of music.

There are many explanations for why people might be bi-
ased against software in some instances, one being that they
have good cause to be suspicious: random choice is used
very often in the design of intelligent systems, including
those in Computational Creativity. Moreover, as we have
already stated, researchers are not afraid to have their soft-
ware tell stories that are ‘not factually accurate’ in order to
explain their decisions. This is not a dying practice, either:
examining system description papers from the 2014 Inter-
national Conference on Computational Creativity alone, we
identified seven systems which explicitly mention random
decision-making in their description (omitting cases where
random selection might be part of a search-specific process,
such as evolution) such as (Rashel and Manurung 2014),
a poetry generator which randomly selects an output from
any poems which meet a minimum quality, or (Tomašič,
Žnidaršič, and Papa 2014) which breaks ties in slogan se-
lection using random choice. Other systems described rely-
ing on hand-crafted metrics for making subjective decisions
which inherit their decision-making capacity directly from
the system’s designer.

We believe that the underlying cause for this bias against
software making decisions independently is not that people
believe that software cannot make such decisions, but rather
that random choice is not satisfying as a context for these
decisions. Random choice cannot be interrogated or under-
stood, does not form a long-term pattern of decision-making,
and is also not something that people often do – even when
people may in fact be making pseudorandom decisions, we
often justify them post-hoc, particularly in the case of cre-
ative activity – see (Charnley, Pease, and Colton 2012) for
examples. Most importantly, random choice cannot be eas-
ily framed through commentary on a creative artefact, be-
cause it has no context to reveal. This limits the software’s
ability to explain itself after the fact.

A System For Generating Preferences
If we acknowledge that inheriting decisions from a person
damages the perception of software as being creative, but
also accept that random decision-making is unsatisfying and
can be equally damaging to perceptions, it leaves us in an
awkward position whenever our software must tackle deci-
sions which are subjective or where the factors involved are
hard to quantify. Ideally, we would like our software to be
able to provide meaningful reasons for small, subjective de-
cisions. By meaningful, we mean that the decision is defen-

sible in some way: there is a reasoning behind it, even if that
reasoning is ultimately arguable (as subjective opinions of-
ten are, by their nature). In this section we will describe an
evolutionary system that generates code to provide the ba-
sis for such decisions, with the primary aim being that these
decisions are defensible, despite being subjective.

The system we describe here generates what we call pref-

erence functions – small snippets of code which express a
preference of some kind between two objects of the same
type. They are based on the concept of Comparators in Java
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which are used to express orderings over lists. A Compara-
tor takes two objects and returns either -1, 0 or 1 if the first
object is less than, equal to, or greater than the second object
respectively according to some ordering. Our functions act
similarly, where a preference can be thought of as an order-
ing over the set of objects of a particular type. More for-
mally, we define a preference function p as a function which
takes two arguments t1, t2 of type T , and returns one of three
integer values r 2 {�1, 0, 1}. The return value indicates the
following three situations:

p(t1, t2) =

8
<

:

1 t1 >p t2
0 t1 =p t2

�1 t1 <p t2

Where ⇤p is an ordering according to preference, i.e. t1 <p

t2 states that t1 is preferred over t2 in some way. The com-
parator can therefore be used to order a list LT of objects of
type T .

Before we describe the operation of the evolutionary sys-
tem, we will go into some detail about the fitness function
that evaluates a particular preference function. Earlier, we
claimed that our intention was to limit the influence of a per-
son’s opinion over the system’s eventual decisions. Below
we will propose metrics which direct the search for prefer-
ence functions – in some sense we are defining the kinds of
preferences the system looks for. We will try to justify our
decisions and show that these metrics are flexible, domain-
agnostic, and aim for defensibility without specifying any-
thing about what kinds of preference should be expressed.

Fitness Metrics
In this section we describe several metrics that can be used to
assess certain qualities of a preference function. This does
not make a judgement about the ‘goodness’ of the prefer-
ence expressed; a preference function which scores higher
on these criteria is not objectively better than one with lower
scores. Rather, we aim to identify meta-level properties of
preference functions in order to search for spaces of interest-
ing, valid or defensible preferences. As a result, we’ve tried
to avoid the use of emotive or judgemental vocabulary when
describing the metrics.

Specificity The specificity of a preference function p for a
set of objects O is defined as:

1� |Np|
|P |

with

P = {(a, b) | (a, b) 2 O ⇥O ^ a 6= b}
Np = {(a, b) | (a, b) 2 P ^ p(a, b) = 0}

In other words: the specificity of a preference function for
a particular list of objects is the proportion of the list for
which it returns a nonzero result, i.e. a definite preference.
Note that this excludes identity preferences (you can’t prefer
something to the same thing), but it does not assume transi-
tivity on p and it includes reflexive preference, i.e. p(a, b)
and p(b, a).

Transitive Consistency The transitive consistency of a
preference function p for a set of objects O is defined as:

|Tp|
|Q|

with

Q =

⇢
(a, b, c)

(a, b, c) 2 (O ⇥O ⇥O)
^ a 6= b ^ b 6= c ^ a 6= c

�

Tp = {(a, b, c) | (a, b, c) 2 Q ^ tightp(a, b, c)}

Where tightp holds for a triple (a, b, c) if the triple is tran-
sitively non-contradictory under the preference function p.
That is:

a �p b ^ b �p c =) a �p c

In other words, transitive consistency is a measure of how
much the decisions made by the preference function con-
firm one another when compared alongside each other. A
high transitive consistency means that the preference is well-
ordered. As with other metrics, this is not inherently good
or bad. Low transitive consistency can imply that the pref-
erence selects based on unconnected or competing features
in the artefacts, which is not uncommon in everyday prefer-
ences.

Reflexivity The reflexivity of a preference function p for a
set of objects O is defined as:

|Pr|
|P |

with

Pr = {(a, b) | (a, b) 2 P ^ p(a, b) = �p(b, a)}

In other words, reflexivity is a measure of how dependent p
is on the ordering of its arguments. A high reflexivity sug-
gests that the preference being expressed is not dependent
on the arguments being supplied to it. This metric is use-
ful specifically because of how we generate code, since it is
possible to generate functions which make decisions based
on the ordering of their parameters (always preferring the
first parameter, for example). High reflexivity means that no
parameter is preferred over another simply because of the
order they are passed in.

Agreement Agreement is a special metric for comparing
two preference functions. This isn’t used to generate prefer-
ences, but can be used to compare them, or generate func-
tions in opposition to one another. Two preference functions
p1 and p2 are said to be in {k,n}-agreement iff:

k  |Pp1,p2 |
|P |

with

Pp1,p2 =

8
<

:(a, b)
(a, b) 2 P ^✓
p1(a, b) = p2(a, b) _
p1(a, b) = 0 _ p2(a, b) = 0

◆
9
=

;

With P and O as before, and where |O| = n. In other words,
agreement measures how closely the definite decisions of

Proceedings of the Sixth International Conference on Computational Creativity June 2015 10



two preference functions are the same – the proportion of
pairs (a, b) for which p1 and p2 either evaluate the same
value or one of them is zero, is greater than k for a list of
objects of size n. This is a good measure of how close two
preference functions are on the same sample of inputs.

To summarise, the first three metrics judge preference
functions along several dimensions: how often they make a
definite (nonzero) judgement on two objects, how consistent
their judgements are across a list of objects, and how depen-
dent the decisions are on the random ordering of inputs. The
final metric, agreement, can be used to model how similar
or dissimilar two preference functions are on the same set of
inputs. We will now describe the preference function gen-
eration system, which uses a combination of the first three
metrics in its evaluation.

Representing Preference Functions
In the following subsections we describe an evolutionary
system implemented in C# which uses the CodeDOM API
to generate code segments which act as the body of a pref-
erence function. The language and library are arbitrary
choices for convenience, and should be transferable to any
platform for which code generation is possible.

CodeDOM is an API within Microsoft’s .NET library that
allows for the high-level (and extremely verbose) represen-
tation of code, which can later be exported to .cs files and
then compiled into executable assemblies within C#. The
code below is equivalent to (p && q) in C#, where p and
q are local variables:
new CodeBinaryOperatorExpression(

new CodeVariableDeclarationStatement("p"),
CodeBinaryOperatorType.BooleanAnd,
new CodeVariableDeclarationStatement("q"));

CodeDOM compilation units can be exported to code pro-
gramatically, and these files can be compiled and executed
at runtime using C# CodeProvider classes. CodeDOM rep-
resents almost every aspect of the C# language, but for our
purposes we do not extend the code generation to the entire
C# specification, as this yields diminishing returns and is too
large a state space for this stage of experimentation. Gener-
ation of the preference functions described here is limited
to:

Expressions
• Primitive expressions containing int, bool or String

types.
• References to the object parameters given to the function.
• Boolean binary operations including && and ||.
• Numeric binary operations.
• Type casts between certain compatible types.
• Array index references.
• Field accesses in objects.

Statements
• Conditional control flow statements (if statements)
• Assignment

• Return of either �1, 0 or 1.
We define a code segment as a list of one or

more statements. This can be put inside a Code-
DOM representation of a method. We define a
generic abstract template class which defines a method
public int compare(int a, int b)1. Gener-
ated code segments are put inside a class which extends
this abstract template, providing an implementation for the
compare method.

Evolving Preference Functions
A population of code segments is randomly generated, and
evaluated using the following objective function:

fitness(p) = 0.5⇥ reflexivity(p)

+ 0.25⇥ specificity(p)

+ 0.25⇥ consistency(p)

This objective function was developed through manual
experimentation, but again we stress that this is not consid-
ered optimal in any way. Specificity may be more important
in some domains, while totally unimportant in others, for in-
stance – it depends on the nature of the preference functions
that the programmer wishes to generate. In our case, reflex-
ivity was found to be important in ensuring a perception of
defensibility in the resulting preference functions. A high
weighting for reflexivity might be preferable in many appli-
cation domains, we will determine this in further develop-
ment and use of these criteria, and we expect variation to be
found in the other metrics as well according to the needs of
the individual system.

Because of the nature of code generation, particularly our
code generator’s implementation, it is possible for a code
segment to either fail compilation, or to throw exceptions
during evaluation. We catch and ignore any errors in this
process and assign a negative fitness to the code segment.

Crossover of two code segments uses one-point crossover
on the list of code statements making up the segment. This is
currently acceptable for the subspace of the C# specification
we cover, although once local variables are introduced, this
approach will need revision to avoid constantly introducing
scope errors (where a local variable is referenced in the lat-
ter half of a function but its declaration was not carried over
during crossover). Mutation is applied by randomly regener-
ating one of the code statements in the list of statements. As
with crossover, once the system’s focus moves to more com-
plex method constructions, a finer-grained mutation process
may be required that is capable of making small changes to
individual statements in a method.

In order to speed up the evolutionary system, we compile
an entire population of preference functions simultaneously,
passing each comparator as a separate file along with the
template comparators they inherit from. If errors are thrown
during the compilation of a particular comparator, they do
not affect the compilation of the other files passed. Testing

1The types of the parameters to the function are changed from
int depending on what type the system is evolving comparators
for.
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of this method showed it was far more efficient than single-
file compilation, even when done in parallel, because most
of the overhead of compilation is in initialising and shutting
down the compiler itself. This may change in the case of
generating extremely large code blocks, but we do not ex-
pect it to be an issue in the near future.

Results
In this section we give several example results from the sys-
tem, for different domains. We begin with some simple
examples for comparing integers, then show two more ap-
plied examples: preference functions which decide between
colours expressed in RGB format, and preference functions
which compare pieces of game content embedded as part of
a simple videogame. In each case, we give the code of the
preference function, and an English description of the code.

These are hand-selected preference functions, however
the curation coefficient – that is, the proportion of the sys-
tem’s output which we would be happy to show to others,
as in (Colton and Wiggins 2012) – is extremely high. So far
we have not seen any high-fitness comparators (>0.95 fit-
ness) that would not act as justifiable, if simple, preferences
in some way. Curation is necessary only to avoid showing
the same function twice, because the system frequently gen-
erates comparators with identical functionality but very dif-
ferent code, as we do not yet implement a novelty search
(Lehman and Stanley 2010).

Basic Preference Examples
The results shown in Figures 1 and 2 were generated with
a population of 20 code segments, a test set of 100 random
integers in the range {�500, 500} to evaluate the preference
functions, and 15 generations of evolution. We found this to
be sufficient to evolve high-fitness (0.95 or higher) functions
that compared integers.

Figure 1 shows a preference function which prefers nega-
tive numbers over positive ones. This is expressed in a rather
awkward way: by adding the two arguments together and
comparing them with one of the arguments on its own. The
else case in this conditional statement returns the opposite
ordering instruction (-1), meaning that this function has a
high consistency while also being precise.

Figure 2 shows a more standard ordering on integers, from
smallest to largest. Both this method and Figure 1 have large
amounts of unreachable or redundant code. This is expected,
given that the system is concerned with the function of code
rather than its design. The unnecessary code is not impossi-
ble to filter out with the right interpretation of compiler mes-
sages, since the C# compiler recognises many of these issues
and will present warnings to the system when attempting to
compile. We touch on this topic in the discussion section.

In a further experiment, we expanded the expressivity of
the code generation to include the char primitive type as
well as the notion of casting to a type. Evolving high-fitness
results for this target domain was more difficult and required
a larger evolutionary run than with integer types. We ran
populations of 30 code segments, a test set of 100 random
chars whose ASCII codes fall in the range {0, 128} to eval-

public int compare(int i, int j) {
if ((i < i)) {

return 0;
return 0;

}
if (((j + i) < j)) {

i = i;
return -1;

}
else {

j = -491;
return 1;

}
return 0;

}

Figure 1: If i is negative, it is preferred over j; the second
conditional check is true if i < 0.

public int compare(int i, int j) {
if ((i <= j)) {

return -1;
j = ((i * 335) % j);

}
else {

return 1;
j = j;

}
return 1;
return -1;

}

Figure 2: Orders numbers from largest to smallest. The first
conditional returns a reverse ordering (-1) if the first argu-
ment is smaller than the second. Note the copious amount
of unreachable code. This constitutes a compile-time warn-
ing in C#, which is suppressed here.

uate the preference functions, and 15 generations of evolu-
tion. Figure 3 shows a function which sorts chars in re-
verse lexicographic order. We increased the population size
because usable preferences were proving difficult to evolve
– as one can see, this is most likely because type casting was
required to produce the simplest preference functions, which
makes the code much longer and therefore harder to evolve.

Object Preferences
Figure 5 shows a preference function evolved for compar-
ing a more complex type – in this case, an object with four
fields representing a Monster from a simple game. The class
skeleton for the object is shown in Figure 4. These exam-
ples were also evolved with a population of size 40, run for
30 generations, with a test set size of 100. Evolving pref-
erence functions for objects gives the system a wider state
space to explore with more interesting comparisons avail-
able to it, with the potential to generate preference functions
which compare along two axes simultaneously.

We are building a prototype game, I Like This Monster

that uses preference generation as part of a process of auto-
mated game design. Choosing one particular kind of game
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public int compare(char i, char j) {
if ((((int)(j)) <= ((int)(i)))) {

return 1;
return -1;

}
else {

i = ((char)(((((int)(i)) -
((int)(i))) * (((int)(j)) -
((int)(j))))));
return -1;

}
return 0;
return 0;

}

Figure 3: Reverse lexicographic ordering on characters.
Note that explicit casts to int types has caused a lot of ex-
cess bracketing.

element over another has a large component of subjectivity
to it, particularly if the game content is already balanced for
difficulty and fun. Rather than randomly choosing certain
game elements, or choosing them according to a fixed de-
signer preference, the game generates a preference for cer-
tain game elements like monsters. This preference is then
used to select from a database of pre-generated game content
to decide what is included in the game. This is analogous to
generating multiple poems and choosing between them as in
(Rashel and Manurung 2014) – but unlike random choice,
the use of preference functions means that the decision can
be framed and given a justification. We discuss how one
might generate text from preference functions below.

For a more visual example of a preference function, Fig-
ure 8 shows another example. In this case, a preference func-
tion is generated for an object representing RGB colours,
with three int fields representing each colour component.
A preference function was generated which prefers colours
with more red in them. Figure 8 shows the effect this
has: the top row shows a randomly generated line of RGB
colours, and the bottom row shows the same line ordered
from least preferred on the left to most preferred on the right.
The preference is very simplistic – it doesn’t quite correlate
to a visual language of ‘redness’, but the software can jus-
tify its decision on a code level even if it does not directly
corresponding to visual processing in people.

In all of the results given in this section, we found that re-
flexivity is the metric which was maximised quickest. This
is likely because it is the simplest to satisfy, as it primar-
ily safeguards against particular bad patterns of code being
generated (as long as the function does not return an answer
based on the ordering of the arguments, it is always max-
imised). If the target is high specificity, this is often max-
imised next, as this requires the preference function simply
return nonzero values. However, more complex specificity
requirements may require branching and non-constant return
statements. In this case, it is much harder to maximise than
transitive consistency. These observations largely apply here
because the domains we are considering are relatively sim-
ple and the preference functions we are generating are low

public class Monster{
public string name;
public int health;
public int damage;
public boolean poisonous;

}

Figure 4: A dummy class specification used for generating
preference functions. health cannot have a negative value,
but damage can (some monsters heal by attacking).

public int compare(Monster i, Monster j){
i.name = j.name;
if ((j.health > i.health)){

i = j;
return 1;

}
else{

return -1;
j.name = j.name;

}
i.damage = (i.health / i.health);

}

Figure 5: An ordering on Monster objects based on their
health variable.

in complexity and length. We expect this to change in fu-
ture – functions which compare multiple variables simulta-
neously, for example, are far more likely to be transitively
inconsistent, while functions which return variable values or
have high branching are more likely to have lower speci-
ficity. This raises the question of how to find these functions
over evolving simpler preferences – it may be that additional
‘interestingness’ metrics are required, or it may simply be
that asking for longer preferences or a novelty search pow-
ered by agreement will be enough to promote the evolution
or more complex preferences.

Related Work
No work we are aware of directly tackles the problem of
generating meaningful, defensible preferences for creative
agents across arbitrary domains. However, the idea of

public override int compare(RGB i, RGB j){
if(((j.r * j.r) > (j.r + (i.r - j.r)))){

j = i;
return -1;

}
else {

return 1;
}

}

Figure 6: An ordering on RGB objects based on their r (red
component) variable.
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Figure 7: A screenshot from I Like This Monster, showing a
level where a particular kind of enemy - poisonous creatures
- has been selected because of a preference for monsters with
the poisonous field set to true.

Figure 8: A random colour palette (top row) and an ordering
of the same palette according to a preference about RGB
colors which prefers colours with more red in them (bottom
row, preferred colours towards the right).

computationally representing subjective decisions has some
precedent. In (Saunders and Gero 2001) the authors de-
scribe a community of creative agents which are designed
to have some concept of novelty and interestingness. Each
agent possesses a neural network which learns by viewing
artworks generated by agents in the community. This can be
used to gauge novelty for a given artwork by assessing how
much the artwork differentiates itself from the network’s
current state. Interestingness is based on a Wundt curve cal-
culation in which the most interesting artefacts lie between
the extremes of high and low novelty.

(Saunders and Gero 2001) can be seen as a form of pref-
erence modelling, in that the agents are armed with a way
of making decisions about creative works, if we interpret
interestingness to be a subjective quota. Our work is differ-
ent in a few important ways: it generates a range of prefer-
ences based on different factors that vary according to the
objects being considered, whereas the community of agents
only work in the realm of novelty. The work is also more
prescriptive, in our opinion, than the metrics we propose -
although we should stress that the authors do not claim to be
investigating the generation of varied preferences, the work
has other objectives, but we have cited it here as an interest-
ing piece of related work.

Similarly, (Maher, Fisher, and Brady 2013) presents a

computational model of surprise, which could be considered
to be a form of preference if applied to selection or evalua-
tion (as the authors propose). Similar to (Saunders and Gero
2001), we differentiate ourselves from this work primarily
because our aim is to produce a higher-level system which
can generate a variety of preferences based on different fac-
tors, rather than primarily basing it on surprise or novelty.

The automatic creation of code by software is not a new
concept. Code generation, or ‘unrolling’ of code, is a com-
mon concept in software engineering, used for purposes
such as optimisation, or the automatic reconfiguration of
code in response to dynamically changing execution envi-
ronments. This is often highly template-based, and the code
is generated for precise functional objectives that are nor-
mally known well in advance.

Code-generating systems also exist in artificial intelli-
gence. Machine learning software, for example, can be
viewed as producing programs as their primary output. De-
cision trees, neural networks or inductive logic programs
can all be seen as forms of computer programs, sometimes
(such as the case of ILP or evolutionary programming) quite
explicitly. Machine learning techniques have been seen in
Computational Creativity on many occasions. For instance,
(Morris et al. 2012) uses machine learning as the basis for
a computationally creative soup recipe inventor, trained on
a corpus of existing soup recipes, and (Colton 2008) uses
machine learning in a module within The Painting Fool, a
computationally creative artist.

The generation of code is perhaps most explicitly present
in Computational Creativity in (Cook et al. 2013), in which
we presented Mechanic Miner, a system which explores,
modifies and executes the codebase for a simple videogame,
in order to discover new concepts for game mechanics and
rules. The system was capable of generating single lines
of code, modifying the existing game’s code to include this
new instruction, and then playing the game to evaluate the
effect of the generated code on gameplay. In doing this, the
system rediscovered several existing game design concepts,
previously invented and used by game designers. It was also
capable of surprising us as the creators of the system, by
presenting solutions which were highly unexpected or took
advantage of the system’s detailed use of code to perform
unexpected operations on the target videogame. This notion
of generating directly executable, readable program code in
an everyday programming language is one of the motiva-
tions for the work we have described here.

Discussion
The preference functions presented in this paper represent a
first step towards a system which can reliably generate inter-
esting preferences for arbitrary targets. We believe it repre-
sents a promising new avenue for exploration, and one that
could greatly enhance the quality of framing that Computa-
tional Creativity systems are able to provide.

Generating code which claims to represent ‘preference’ is
potentially controversial. The reason for many decisions be-
ing randomised or guided by hand-designed heuristics in the
first place is that software does not hold personal opinions
and is not human. We would argue, however, that we are in
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the business of perception – recall the definition of Compu-
tational Creativity from earlier as being dependent on ‘unbi-
ased observers’. Whether we like it or not, our software is
judged on how it presents itself, and our first-hand experi-
ence of building systems and presenting them to the public
has shown us that random decision-making and heuristics
inherited from people are as damaging to expectation and
perception as any amount of personification.

Furthermore, we would argue that having software ex-
press a preference is not necessarily in bad faith. Represent-
ing a random decision as having a basis in personhood is de-
ceiving the observer, but with a preference function there is
a chain of reasoning, a process that is itself accountable and
can be framed, that shows where this preference has origi-
nated from. This preference can be interrogated, an observer
can present new examples to it to try and better understand
what it prefers and why. The software is not claiming to
have an emotional basis for this – it is simply stating a pref-
erence that it used to guide its decision-making process. Of
course this does not offer a perfect solution to all the prob-
lems of subjective decision-making in creative software, but
we believe it offers a new way of exploring the issue.

It is worth noting that these preferences are, in some ways,
equivalent to random choice. They are arbitrary, domain-
agnostic, they do not care about their impact on the viewer
(unless we used the agreement to be contrarian, perhaps).
We are not claiming here that these preferences provide a
benefit to the code over randomly choosing something, nor
do we even claim that it makes the system more creative in
terms of its functionality. We do believe, however, that they
provide a benefit to the perception of the software as cre-
ative if its decisions can be justified, if we can claim that no
random number generation is involved, and if its decision-
making process can be inspected and interrogated by ob-
servers.

There are several important areas of future work to be un-
dertaken in order for the system described in this paper to
be able to work in large computationally creative systems.
Some of these topics have already appeared earlier in this
paper. Firstly, the system should be expanded with a larger
state space to explore in terms of code generation, so that
more complex functions can be generated. This may be
possible with existing techniques simply by applying it at a
larger scale, however the state space explosion is significant
once more complex programming features – like method in-
vocation – are taken into account. It may be that evolution
is not the best approach for generating code at this scale, or
that the process requires alteration in order to be more effi-
cient for this kind of optimisation problem.

A second point of future work is automatic simplification
of generated preference functions. This is an achievable
goal, and many optimisation processes for program com-
pilation already do this. We mention it here because it is
particularly important for code generation in the context of
Computational Creativity, as we explained in (Cook et al.
2013). Compressing a piece of code by removing unreach-
able or non-functional code makes it easier to understand,
easier to compare, and also has the important side effect of
making it easier to explain, which is a third future work task.

Being able to explain the function of a piece of code is
crucial to this work – in the examples we gave in the Results
section there was a lack of textual framing to the visual ex-
amples. In some senses it is possible to interpret the effect of
the preferences simply by looking at the content produced,
but in general it is desirable to be able to have the system it-
self express ‘I prefer redder colors’. Producing English ren-
derings of the function of code is complex – we are currently
exploring possibilities which use some metadata tagging on
the code prior to generating preferences, but there are many
more and better approaches yet to be discovered.

Finally, representing preference functions in a higher-
level mathematical language may be advantageous for this
work. Many of the problems we have encountered are direct
consequences of the code-based representation, such as the
presence of unreachable code and functionally identical gen-
eration. We hope to look into more abstract representation
formats for future versions of our system.

Conclusions
In this paper we introduced a series of criteria for assessing
functions that describe preferences, motivated by a desire
to provide non-random justifications for small creative de-
cisions that don’t rely on other people. We showed how an
evolutionary system can use these criteria as the basis for
a fitness function that evolves code which act as preference
functions. We gave examples of preference functions we
evolved using these criteria for comparing various types, in-
cluding videogame content and colours, and discussed the
issues it raises for Computational Creativity, in terms of the
code itself and the nature of generated preferences.

The perception of creativity in software is a defining prob-
lem for our field. We hope that the work we have described
here offers a new avenue to explore for framing decisions
made by the software we build. Even the smallest of de-
cisions are affected by people’s perceptions of software as
arbitrarily random, or clones of their designers. We believe
that the future of decision-making in software lies beyond
random choice and modelling human opinion – we need to
give our software independence and remove the influence
of other people on it. We acknowledge that we have by
no means managed to remove ourselves from the process
of decision-making – we have designed the system which
produces preference functions, defined its metrics and pro-
vided it a fitness function. But we hope that we have offered
a way to take one step further into the background, leaving
our software to stand alone at the fore.
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