
Toward a Context Sensitive Music Generator for Affective State Expression

Marco Scirea1 and Peter Eklund2

1 Center for Computer Games Research
2Robotics, Evolution and Art Laboratory
IT University of Copenhagen, Denmark

{msci,petw}@itu.dk

Julian Togelius
Department of Computer Science and Engineering

New York University, NY, USA
julian@togelius.com

Abstract

We describe the architecture of a a music generator for
games and the current state of its implementation. The
objectives of the generator are: to develop the capabil-
ity of expressing different affective states using a vari-
ety of AI techniques, being able to create music in real-
time and finally to react in real-time to external stim-
uli. The project will be used in connection to research
on Experience Driven Procedural Content Generation
(EDPCG)(Yannakakis and Togelius 2011), especially in
games. This project is the continuation of a previous
project to construct a Moody Music Generator (Scirea,
Cheong, and Bae 2014): a real-time procedural music
generator developed using PD (Pure Data). While pre-
vious work could also express affective states(Scirea,
Nelson, and Togelius 2015), the music generation did
not take the temporal structure of music–such as chord
sequences, leitmotifs, or improvisation–into account.
With the new generator we aim at creating more inter-
esting and expressive music, while still retaining the af-
fective expressiveness of previous work.

Introduction
Music has the power to evoke moods and emotions–even
music generated algorithmically. In fact, in many cases the
whole purpose of a music generation algorithm is to evoke
a particular mood. This is particularly true of music gen-
erators that form part of highly interactive systems such as
computer games, where a common goal of dynamic music
systems is to elicit a particular mood from the user on de-
mand, as suits the current state of the game play. To take
the example of a computer game, music generation can be
seen as content within the experience-driven procedural con-
tent generation framework (Yannakakis and Togelius 2011),
where the game adaptation mechanism generates music with
a particular mood in response to player actions.

In games, unlike in traditional sequential media such as
novels or movies, events unfold in response to player in-
put. Therefore, the music composer in an interactive envi-
ronment needs to create music that is dynamic while also
being non-repetitive. Procedural generation of music con-
tent is a field that has received much attention over the last
decade. While many games use some sort of procedural
music structure, there are different approaches (or degrees),
as suggested by Wooller et al.: transformational algorithms

and generative algorithms (Wooller et al. 2005) In order to
generate mood-based music, we use four musical features
– intensity, timbre, rhythm, and dissonances, mainly in-
spired by Liu et al. (Liu, Lu, and Zhang 2003); see (Scirea,
Nelson, and Togelius 2015) for a detailed explanation.

Architecture
The system is composed of three main parts: composition
generator, real-time affective music composer and an archive
of previous compositions. The archive maintains a database
of all the previous compositions connected to the respective
levels/scenes of the game. The archive allows persistence
of compositions to be reused at a later time, but also allows
us to calculate a measure of novelty of future compositions
compared with what has already been heard. This database
could also be expanded to connect compositions to specific
characters, events, levels, etc.

The real-time affective music composer is the component
that transforms a composition (see the following section for
a detailed description of what we mean by composition) in
the final score according to a specific mood or affective state
that we want to express. In this paper we will focus on the
composition generator, as it is already implemented.

Let’s describe the functioning of the system when we en-
ter a level/scene in a connected game: the system will first
check if the current level appears in the archive, so if we al-
ready have a composition connected to the level. If so, the
composition is passed to the real-time affective music com-
poser, which creates a score out of the composition, with
possible simple variations (to avoid monotone looping mu-
sic, variations could be alterations, extensions or inversion
of chords, small variations in the melody and so on) and us-
ing the mood altering music features to express the desired
affective state. In the event we don’t possess a composition
connected to the level the composition generator is called,
this will produce a composition that can be tested for nov-
elty/similarity against one or all archived compositions. In
this way we create associations between similar composi-
tions and create compositions that sound significantly dif-
ferent from others the game player is already familiar with.

The system will also be able to react to game events, these
events depending on the effect desired for example, a sim-
ple change in the affective state, a variation of the current
composition or an entirely new composition.

Late-breaking abstract presented at The Sixth International Conference on Computational Creativity, June 2015



Composition Generation Currently, only the generation
of compositions is implemented. By composition we mean
a chord sequence, a melody and an accompaniment. It is
noteworthy that accompaniment is only an abstraction and
not a complete score of a possible accompaniment, we will
describe it in detail in Accompaniment Generation below.

We decided to design the composition in such a way be-
cause we want to abstract what makes a music recognizable
and gives it identity. By generating these parts, which lack
some information that one would include in a classically
composed piece of music (tempo, dynamics, etc.), we allow
our system to modify the music played in real-time depend-
ing on the affective state to convey. The generation of com-
positions is a process with multiple steps: (i) create a chord
sequence, (ii) evolve a melody fitting this chord sequence,
and (iii) create an accompaniment for the melody/chord se-
quence combination.

Chord Sequence Generation Our method for generat-
ing a chord sequence is straightforward: we use a directed
graph of common chord sequences and do random trajecto-
ries in this graph. We can specify various parameters of this
sequence as: sequence length, first element, last element,
chord to which the last element can resolve properly (e.g., if
we specify that we want the last chord to be able to resolve
in the V degree, the last element might be a I or a ii).

The interesting aspect of this graph is that it also shows us
common resolutions to chords outside of the current key, this
gives us a simple way of dealing with chord changes. Each
chord can be interpreted as different degrees depending on
which key we consider, so if we want a key change we can
simply consider which degree the last chord in the sequence
will be in the new key and follow the graph to return to the
new key. This gives us good sounding key changes which
do not sound too abrupt.

Melody Generation For melody generation we use an
evolutionary approach. We defined a number of features to
include and avoid in our melodies based on classical mu-
sic composition guidelines and personal experience. We di-
vided these features into constraints and objective functions.
Accordingly, we use a Feasible/Infeasible two-population
method (FI-2POP) with multi-objective optimization for the
Feasible population. Given a chord sequence, a variable
number of notes is generated for each chord, which will
evolve without duration information. Once the sequence of
notes is created we semi-randomly generate the duration of
the notes.

FI-2POP The FI-2POP method consists in having two
populations evolving in parallel, where feasible solutions are
selected and bred to improve their objective function values
while infeasible solutions are selected and bred to reduce
their constraint violations. When breeding the new gener-
ation individuals are tested to see if they violate the con-
straints, if so they are moved to the Infeasible population,
otherwise they are moved to the Feasible one. We have two
constraints: a melody should not have leaps between notes
bigger than a fifth and should contain a minimum amount of
leaps of a second (50% in the current implementation).

Genome Representation The genome consists of a num-

ber of values (the number of notes we have to generate)
which can express the notes belonging to two octaves of a
generic key (so 0-13). We do not consider in this stage in-
troducing notes not belonging to the key, as this will appear
in later stages, when introducing variations of the composi-
tion to express affective states or chord variations.

Multi-Objective Optimization Fitness Function Three
objectives compose the fitness functions: the melody should
approach big leaps (larger than a second) in a counter step-
wise motion, where the melody presents big leaps the leap
notes should belong to the underlying chord and finally the
first note played on a chord should be part of the chord.

Accompaniment Generation We include accompani-
ment in the composition because it is not only chords and
melody that gives identity to music and expresses affect. We
can generate accompaniment either from combinations of
elements in a small archive or semi-randomly. The accom-
paniment is divided into two parts: a basic rhythm (a col-
lection of note durations) and a basic note progression (for
example an arpeggio). We can progress from the accom-
paniment representation to a score of the accompaniment
by creating notes with durations from the basic rhythm and
pitches from the progressions (offset on the current under-
lying chord). This basic score can be modified and slightly
randomized for variety or for affect expression, while still
maintaining a rhythmic and harmonic identity that will be
characteristic of the composition.

Conclusions and Future (Ongoing) Work
We have described ongoing work on a context sensitive
affect-expressing music generator designed to be used in
games but that also could be used in other contexts. Com-
pared to our previous generator, this development creates
more complex music which might influence our current af-
fective state expression theory. We intend to run a series of
studies to explore these relationships.

References
Liu, D.; Lu, L.; and Zhang, H.-J. 2003. Automatic mood
detection from acoustic music data. In Proceedings of the
International Symposium on Music Information Retrieval,
81–7.
Scirea, M.; Cheong, Y.-G.; and Bae, B. C. 2014. Mood ex-
pression in real-time computer generated music using pure
data. In Proceedings of the International Conference on Mu-
sic Perception and Cognition.
Scirea, M.; Nelson, M. J.; and Togelius, J. 2015. Moody
music generator: Characterising control parameters using
crowdsourcing. In Evolutionary and Biologically Inspired
Music, Sound, Art and Design. Springer. 200–211.
Wooller, R.; Brown, A. R.; Miranda, E.; Diederich, J.; and
Berry, R. 2005. A framework for comparison of process
in algorithmic music systems. In Generative Arts Practice
2005 — A Creativity & Cognition Symposium.
Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Affec-
tive Computing 2(3):147–161.

Late-breaking abstract presented at The Sixth International Conference on Computational Creativity, June 2015




