
Learning large scale musical form to enable creativity

Francis Screene and Geraint A. Wiggins
Computational Creativity Lab

School of Electronic Engineering and Computer Science
Queen Mary University of London

Mile End Road, London E1 4FZ, UK
fscreene@icloud.com,geraint.wiggins@qmul.ac.uk

Introduction
We present a preliminary study of a novel method for the
creation of original music from learned data. Historically,
the vast majority of music creation programs have worked
from the bottom up, constructing music from notes and/or
chords, according to music-theoretic or machine-learned
rules (e.g. Ebcioğlu, 1988; Cope, 1991; Conklin and Wit-
ten, 1995; Pearce and Wiggins, 2007). Our approach is
different. We are interested in the high-level structure of
music, rather than the very low level. Starting from work
by Collins (2011), we attempt to merge stochastic methods
for music generation with top-down analytical methods for
music-structural analysis (Meredith, Lemström, and Wig-
gins, 2002). The long term vision behind our proposal is
to learn a statistical structural grammar from collections of
pieces, which can then be used to generate large-scale struc-
tures which in turn can be instantiated with low-level detail.
In this paper, we take the very first step: to analyse a piece
of music into a graph of structural components and use it to
produce music which might be considered as an improvisa-
tion on that original piece.

Background
SIA
The SIA algorithm was developed by (Meredith, Lemström,
and Wiggins, 2002). The objective of the algorithm is to
exhausitvely identify repeating patterns and structure within
a given point set, used, in our case, to represent a musical
score.The algorithm allows automatic extraction of such re-
peated structural units as shown in the two boxes in Figure
1, and a concise representation of the relationships between
each unit and its repetition, which may be at a different pitch.
In general, the structural units discovered may span very
small and very large segments of musical time. They are
often skeletal forms, around which musical ornamentation
is draped: in this case, SIA discovers the repeating skele-
ton and not the ornamentation. Importantly, the units that
SIA discovers sometimes contain other, smaller units. This
quasi-recursive structure presents interesting challenges in
developing our technique.

SIA works because repetition (usually with variation) is
what gives music its sense to a listener. It is this feature that
allows us to use the resulting analysis for generation of new

2.2 The Sia algorithm family

The Sia algorithm was originally developed and written by Meredith et.al. (David Meredith,

2002) and is currently still under development by David Meredith who retains an active repos-

itory. The underlying objective of the algorithm is to identify repeating patterns and structure

within a given point set. It allows for di↵erent parameters of “matching” between point sets

which I will explain in a later paragraph. Sia has been shown to work very well in the field of

music where the notes of a score can be expressed as a point set.

Figure 2.2: Sia attempts to find recurring structures such as the ones inside the boxes shown

in this example. This sheet music was downloaded from imslp.org (I., 2011)

In order to be able to work with a score (a song written down as notes) it first needs to be

transformed into a point set as a point set is much easier to work with than musical notation. In

order to transform a song into a point set, every single note in the song needs to be translated

into a point that is somehow defined by two (or more) coordinates. The most intuitive basis for

this transformation is the timing of each note and the note itself. In musical notation, timings

are represented in terms of bars and note durations and pitches are represented as note-name

and octave. The musical pitch scale is divided into octaves, which are recurring sets of the same

8 notes at di↵erent pitch-heights. The same notes in di↵erent octaves will have the same sound

to them while being at di↵erent pitches. In terms of point set representation this means that we

translate the musical time into an absolute value of milliseconds since the beginning of the song

and for pitch we generate an absolute pitch representation from the note-and-octave notation.

Using these two values we can then represent every note in the song as a 2-Dimensional point

set.

9

Figure 1: A very simple example of the kind of musical rep-
etition discovered by SIA.

music. It yields an analysis of the piece in terms of frag-
ments of score (called maximal translatable patters, MTPs),
coupled with vectors representing all the occurrences of the
same music, at whatever pitch, in the piece. These units, of
one MTP plus all its translational vectors, are called trans-
lational equivalence classes (TECs). Our prototype uses a
particular version of SIA, called COSIATEC, which com-
presses music by choosing the biggest TEC, removing and
recursing until no notes are left. Then each TEC is analysed
recursively also.

Probabilistic grammars

Our generation mechanism is drawn from Markovian
approaches in computational linguistics (Manning and
Schütze, 1999). In language, the idea is to describe likely
continuations from any given initial substring of an utter-
ance as a distribution over the possible symbols that can oc-
cur next in sequence. With some additions, this turns out
to be a remarkably good model of human melodic expecta-
tion at the individual note level (Pearce and Wiggins, 2006).
To our knowledge, however, there has not previously been
an attempt to build a Markov model in which the states de-
note fragments of polyphonic music, as opposed to individ-
ual notes or chords. A particular challenge for our design
was the recursive nature of the SIA computation: because
TECs may contain other TECs, we must use an enriched
kind of Markov model, with two kinds of arc, one to express
continuation, the other to express sub-structure.

Late-breaking abstract presented at The Sixth International Conference on Computational Creativity, June 2015



sound appealing to humans.

3.2 The Process

Figure 3.1: A sample run of the project including the distinct parts taking place in other

programs.

In order to achieve the above-described goal, a series of steps need to be undertaken. The figure

above shows a sample run through the various programs that are part of the project. First, the

song needs to be analyzed for TECs in order to provide the baseline for the rest of the process.

The song analysis is undertaken using David Meredith’s (Meredith, 2013) implementation of

the Cosiatec algorithm. The main pieces of data this approach will be used on are listed in the

data section below.

Following this, the output files need to be read and parsed which will be undertaken using a

variety of string parsing methods implemented by me in Java. After having been parsed, the

TECs then need to be placed into Markov chains as states. This will be undertaken by turning

the TECs into a list of events and then parsing transitions from TEC to TEC, which provides

us with an accurate representation of the relationships within the song.

Next, we can perform various operations on the Markov chain. We can, for example, nest TECs

within other TECs if they are at least partly contained within them. This is mostly a design

decision but has the potential to create a more natural sounding music in the end result. The

resulting representation of the song can then be used to attempt to regenerate the song based

solely on the representation in the Markov chain. An other option is to attempt to generate

music that is based upon our original piece but that does not directly attempt to resemble the

original song.

16

Figure 2: The architecture of our prototype.

with the other approach of using nested TECs lead to my decision not to incorporate them into

the final generation of the evaluation.

5.2 The Markov Chain Generation Algorithm

Data: SIATEC Output File

Result: Markov Chain of TECs

initialization;

for Each Tec do

CREATE events by adding vectors to TEC points;

ADD events to eventlist;

end

SORT eventlist by timestamp;

for Each Event do

ADD id of next events TEC to current TEC;

end

for Each TEC do

Calculate probabilities based on TEC ids;

end

for Each TEC do

for Each Other TEC do

if Other TEC start >TEC start && Other TEC END >TEC END * 3 then

Make Other TEC subtec of TEC;

end

end

end
Algorithm 1: Markov Chain Generation from TECs

In order to express the collection of TECs output by Cosiatec as a Markov Chain we need to

employ proper parsing methods. I will outline the process I’ve gone through in creating Markov

Chains in the following.

At first, the Cosiatec output file is read into Java and, after undergoing a number of String

operations, stored in the TEC format which simply holds the same information the Cosiatec

output file did. Next, a chain of events is generated from the TECs that were previously parsed.

An event is simply a repetition of a TEC at a specified position. The positions for the events

are calculated by simple vector additions between the points in each TEC and the vectors in

each TEC. Once the events are generated, they are ”flattened” in order to be able to express

24

Figure 3: The analysis algorithm.

System Architecture and Algorithms
Our prototype has a simple architecture, illustrated in Fig. 2.
The learning algorithm used is shown in Fig. 3. The gen-
eration algorithms is shown in Fig. 4. The system analyses
a piece of music in MIDI format, and takes a random walk
around the resulting model, with probabilities determined by
the structure of the SIA analysis. The result sounds some-
what like a “noodling” improvisation on the original piece.

Evaluation
We evaluated the model by generating new pieces from 10
pieces of music (2nd Time; All about that Base; Alice In
Wonderland; Beale Street Blues; Maple Leaf Rag; My Fa-
vorites; Chopin Opus 22 Pt. 4; Chopin “Pathétique”; Sy-
rinx; Toccata and Fugue in D Minor). The pieces generated
from our SIA-determined model were paired in a balanced
block design with uniform random walks through the same
piece. The pairs were played to 16 human listeners, who
were asked which of each pair sounded more intentional.
The results are modest but promising: 61% chose the piece
generated by our system as the more intentional one.

Conclusion and Future Work
This very preliminary study suggests that statistical learn-
ing may be a good model of musical structure at the high
(section-wise) level as well as the low (note-wise) level.

These nested substates represent inner parts of the TECs and have the potential to produce

interesting chains by being transitioned through.

5.3 Music Generation

Data: Markov Chain of TECs

Result: Sequence of Midi TECs

initialization;

currentTEC = firstTEC;

for i >maxlength do

if currentTEC contains TECS then

recursively call self;

end

else

currentTEC = probabilistically select successor TEC from currentTEC;

add currentTEC to playsequence;

return playsequence;

end

end
Algorithm 2: Chain Generation from Markov Chain

Now that we have our songs musical information stored in the form of Markov Chains we have

a model, which we can base generation of music on. We’re at the root of the creative basis of

the song. In order to create a random chain from our Markov chain, we need an entry point.

This entry point is the first TEC in order. This is a design decision, which could be changed

at any point in time, but it is used as it provides an easy entry. From this entry point we can

transition to any of the following states, which is achieved using roulette wheel selection.

Traversing the entire chain can be an infinite process which means we need to set end conditions.

On very obvious end condition is a state, which has no outgoing transitions. Arriving at such a

state will conclude the ”pseudo-random-walk” over the chain. A problematic with this is that

the final state in any chain is usually not the final ”bit” of the song as we only find repeated

patterns using Cosiatec which in turn means that we very rarely reach such a state. Another

method for terminating the walk is by simply limiting the depth (length) of our chain, which

leaves us with the issue of periodically causing a rather ”abrupt” cuto↵ of the generated song,

which feels unnatural.

The above issues can be resolved by using a second order Markov-chain that reduces the amount

of possible transitions from each state and has a higher likelihood of generating a combination of

26

Figure 4: The generation algorithm.

However, in the best sense, it raises more questions than it
answers—specifically: what is the best way to construct this
non-standard hierarchical Markov Model; what is the best
way to generate the new outputs; and, beyond the scope of
the current work, how can multiple SIA analyses, from mul-
tiple pieces, be combined to generate music that combines
ideas from multiple learned sources?

Acknowledgments
The second author was funded by the project Lrn2Cre8,
which acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under FET grant number 610859.

References
Collins, T. 2011. Improved methods for pattern discovery

in music, with applications in automated stylistic compo-
sition. Ph.D. Dissertation, The Open University.

Conklin, D., and Witten, I. H. 1995. Multiple viewpoint
systems for music prediction. Journal of New Music Re-
search 24:51–73.

Cope, D. 1991. Computers and Musical Style. Oxford Uni-
versity Press.

Ebcioğlu, K. 1988. An expert system for harmonizing four-
part chorales. Computer Music Journal 12(3):43–51.

Manning, C. D., and Schütze, H. 1999. Foundations of Sta-
tistical Natural Language Processing. Cambridge, MA:
MIT Press.

Meredith, D.; Lemström, K.; and Wiggins, G. 2002. Algo-
rithms for discovering repeated patterns in multidimen-
sional representations of polyphonic music. Journal of
New Music Research 31(4):321–345.

Pearce, M. T., and Wiggins, G. A. 2006. Expectation in
melody: The influence of context and learning. Music
Perception 23(5):377–405.

Pearce, M. T., and Wiggins, G. A. 2007. Evaluating cog-
nitive models of musical composition. In Cardoso, A.,
and Wiggins, G. A., eds., Proceedings of the 4th Interna-
tional Joint Workshop on Computational Creativity, 73–
80. London: Goldsmiths, University of London.

Late-breaking abstract presented at The Sixth International Conference on Computational Creativity, June 2015




