Learning large scale musical form to enable creativity
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Introduction

We present a preliminary study of a novel method for the
creation of original music from learned data. Historically,
the vast majority of music creation programs have worked
from the bottom up, constructing music from notes and/or
chords, according to music-theoretic or machine-learned
rules (e.g. Ebcioglu, 1988; Cope, 1991; Conklin and Wit-
ten, 1995; Pearce and Wiggins, 2007). Our approach is
different. We are interested in the high-level structure of
music, rather than the very low level. Starting from work
by Collins (2011), we attempt to merge stochastic methods
for music generation with top-down analytical methods for
music-structural analysis (Meredith, Lemstrom, and Wig-
gins, 2002). The long term vision behind our proposal is
to learn a statistical structural grammar from collections of
pieces, which can then be used to generate large-scale struc-
tures which in turn can be instantiated with low-level detail.
In this paper, we take the very first step: to analyse a piece
of music into a graph of structural components and use it to
produce music which might be considered as an improvisa-
tion on that original piece.

Background
SIA

The SIA algorithm was developed by (Meredith, Lemstrom,
and Wiggins, 2002). The objective of the algorithm is to
exhausitvely identify repeating patterns and structure within
a given point set, used, in our case, to represent a musical
score.The algorithm allows automatic extraction of such re-
peated structural units as shown in the two boxes in Figure
1, and a concise representation of the relationships between
each unit and its repetition, which may be at a different pitch.
In general, the structural units discovered may span very
small and very large segments of musical time. They are
often skeletal forms, around which musical ornamentation
is draped: in this case, SIA discovers the repeating skele-
ton and not the ornamentation. Importantly, the units that
SIA discovers sometimes contain other, smaller units. This
quasi-recursive structure presents interesting challenges in
developing our technique.

SIA works because repetition (usually with variation) is
what gives music its sense to a listener. It is this feature that
allows us to use the resulting analysis for generation of new
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Figure 1: A very simple example of the kind of musical rep-
etition discovered by SIA.

music. It yields an analysis of the piece in terms of frag-
ments of score (called maximal translatable patters, MTPs),
coupled with vectors representing all the occurrences of the
same music, at whatever pitch, in the piece. These units, of
one MTP plus all its translational vectors, are called trans-
lational equivalence classes (TECs). Our prototype uses a
particular version of SIA, called COSIATEC, which com-
presses music by choosing the biggest TEC, removing and
recursing until no notes are left. Then each TEC is analysed
recursively also.

Probabilistic grammars

Our generation mechanism is drawn from Markovian
approaches in computational linguistics (Manning and
Schiitze, 1999). In language, the idea is to describe likely
continuations from any given initial substring of an utter-
ance as a distribution over the possible symbols that can oc-
cur next in sequence. With some additions, this turns out
to be a remarkably good model of human melodic expecta-
tion at the individual note level (Pearce and Wiggins, 2006).
To our knowledge, however, there has not previously been
an attempt to build a Markov model in which the states de-
note fragments of polyphonic music, as opposed to individ-
ual notes or chords. A particular challenge for our design
was the recursive nature of the SIA computation: because
TECs may contain other TECs, we must use an enriched
kind of Markov model, with two kinds of arc, one to express
continuation, the other to express sub-structure.
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Figure 2: The architecture of our prototype.

Data: SIATEC Output File
Result: Markov Chain of TECs
initialization;
for Each Tec do
CREATE events by adding vectors to TEC points;
ADD events to eventlist;
end
SORT eventlist by timestamp;
for Each Event do
‘ ADD id of next events TEC to current TEC;
end
for Each TEC do
‘ Calculate probabilities based on TEC ids;
end
for Each TEC do
for Each Other TEC do
if Other TEC start >TEC start && Other TEC END >TEC END * 3 then
‘ Make Other TEC subtec of TEC;
end
end
end

Figure 3: The analysis algorithm.

System Architecture and Algorithms

Our prototype has a simple architecture, illustrated in Fig. 2.
The learning algorithm used is shown in Fig. 3. The gen-
eration algorithms is shown in Fig. 4. The system analyses
a piece of music in MIDI format, and takes a random walk
around the resulting model, with probabilities determined by
the structure of the SIA analysis. The result sounds some-
what like a “noodling” improvisation on the original piece.

Evaluation

We evaluated the model by generating new pieces from 10
pieces of music (2nd Time; All about that Base; Alice In
Wonderland; Beale Street Blues; Maple Leaf Rag; My Fa-
vorites; Chopin Opus 22 Pt. 4; Chopin “Pathétique”; Sy-
rinx; Toccata and Fugue in D Minor). The pieces generated
from our SIA-determined model were paired in a balanced
block design with uniform random walks through the same
piece. The pairs were played to 16 human listeners, who
were asked which of each pair sounded more intentional.
The results are modest but promising: 61% chose the piece
generated by our system as the more intentional one.

Conclusion and Future Work

This very preliminary study suggests that statistical learn-
ing may be a good model of musical structure at the high
(section-wise) level as well as the low (note-wise) level.

Data: Markov Chain of TECs

Result: Sequence of Midi TECs
initialization;

currentTEC = first TEC;

for i >maxlength do

if currentTEC contains TECS then
‘ recursively call self;

end

else

current TEC = probabilistically select successor TEC from currentTEC;

add currentTEC to playsequence;
return playsequence;

end
end

Figure 4: The generation algorithm.

However, in the best sense, it raises more questions than it
answers—specifically: what is the best way to construct this
non-standard hierarchical Markov Model; what is the best
way to generate the new outputs; and, beyond the scope of
the current work, how can multiple SIA analyses, from mul-
tiple pieces, be combined to generate music that combines
ideas from multiple learned sources?
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