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Abstract 
 
Efforts in combining quantum and neural computation are 
briefly discussed and the concept of entanglement as it 
applies to this subject is addressed.  Entanglement is 
perhaps the least understood aspect of quantum systems 
used for computation, yet it is apparently most responsible 
for their computational power.  This paper argues for the 
importance of understanding and utilizing entanglement in 
quantum neural computation. 
 
 
1 Introduction 
 
There exist at least two motivations (from the 
computational standpoint) for applying the unique 
capabilities of  quantum computation to the field of neural 
networks:  
 

1) to compensate for ever-decreasing scales in 
hardware development; 

2) to produce computational capability not 
available using classical neural computation. 

 

Motivation (1) is the result of Moore’s Law – as hardware 
continues to shrink, we rapidly approach the limit of 
classical mechanics.  When this limit is reached, individual 
computing components will be so small that their behavior 
is governed by the rules of quantum rather than classical 
mechanics.  Motivation (2) follows naturally from the fact 
that quantum systems have been shown to be capable of 
computation that is not possible on classical systems [1] [2] 
[3] [4].  Are there also problems in computational learning 
for which quantum computation will prove superior to 
classical approaches?  While both motivations are 
important, it is the second that drives the arguments 
presented here – given the motivation to produce 

superclassical computational capability, understanding and 
utilizing the quantum mechanical characteristic of 
entanglement is important for combining quantum 
computation with neural computation.  In the following 
sections the basics of quantum computation are reviewed; a 
brief overview of current research in combining quantum 
with neural computing is given; the concept of 
entanglement is defined; and the utility of entanglement in 
quantum neural computing is discussed. 
 
2 Quantum Computation 
 
Quantum computation is based upon physical principles 
from the theory of quantum mechanics (QM), which is in 
many ways counterintuitive.  Yet it has provided us with 
perhaps the most accurate physical theory (in terms of 
predicting experimental results) ever devised by science.   
The theory is well established and is covered in its basic 
form by many textbooks (see for example [5]).  Several 
necessary ideas that form the basis for the study of quantum 
computation are briefly reviewed here.  
 
2.1 Linear Superposition 
Linear superposition is closely related to the familiar 
mathematical principle of linear combination of vectors.  
Quantum systems are described by a wave function ψ that 
exists in a Hilbert space.  The Hilbert space has a set of 
states, iφ , that form a basis, and the system is described 
by a quantum state ψ ,  
 

∑=
i

iic φψ  
 

ψ  is said to be in a linear superposition of the basis states 
iφ , and in the general case, the coefficients ci may be 

complex.  Use is made here of the Dirac bracket notation, 
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where the ket ⋅  is analogous to a column vector, and the 
bra ⋅  is analogous to the complex conjugate transpose of 
the ket.  In quantum mechanics the Hilbert space and its 
basis have a physical interpretation, and this leads directly 
to perhaps the most counterintuitive aspect of the theory.  
The counter intuition is this – at the microscopic or 
quantum level, the state of the system is described by the 
wave function ψ, that is, as a linear superposition of all 
basis states (i.e. in some sense the system is in all basis 
states at once).  However, at the macroscopic or classical 
level the system can be in only a single basis state.  For 
example, at the quantum level an electron can be in a 
superposition of many different energies; however, in the 
classical realm this obviously cannot be. 

8.0
5

2
2

2
=








=↑ ψ  

 

A simple two-state quantum system, such as the one just 
introduced, is used as the basic unit of quantum 
computation.  Such a system is referred to as a quantum bit 
or qubit and renaming the two states 0  and 1 , it is easy 
to see why this is so. 
  
2.3 Operators  
Operators on a Hilbert space describe how one wave 
function is changed into another.  Here they will be denoted 
by a capital letter with a hat, such as Â , and they may be 
represented as matrices acting on vectors.  Using operators, 
an eigenvalue equation can be written iii aA φφ =ˆ , 
where ai is the eigenvalue.  The solutions iφ  to such an 
equation are called eigenstates and can be used to construct 
the basis of a Hilbert space as discussed in Section 2.1.  In 
the quantum formalism, all properties are represented as 
operators whose eigenstates are the basis for the Hilbert 
space associated with that property and whose eigenvalues 
are the quantum allowed values for that property.  It is 
important to note that operators in quantum mechanics must 
be linear operators and further that they must be unitary so 
that IAAAA ˆˆˆˆˆ †† == , where Î  is the identity operator 
and †Â  is the complex conjugate transpose, of Â. 

 
2.2 Coherence and decoherence 
Coherence and decoherence are closely related to the idea 
of linear superposition.  A quantum system is said to be 
coherent if it is in a linear superposition of its basis states.  
A result of quantum mechanics is that if a system that is in 
a linear superposition of states interacts in any way with its 
environment, the superposition is destroyed.  This loss of 
coherence is called decoherence and is governed by the 
wave function ψ.  The coefficients ci are called probability 
amplitudes, and 2

ic gives the probability of ψ  collapsing 
into state iφ  if it decoheres.  Note that the wave function 
ψ describes a real physical system that must collapse to 
exactly one basis state.  Therefore, the probabilities 
governed by the amplitudes ci must sum to unity.  This 
necessary constraint is expressed as the unitarity condition  

  
2.4 Interference 
Interference is a familiar wave phenomenon.  Wave peaks 
that are in phase interfere constructively (magnify each 
other's amplitude) while those that are out of phase interfere 
destructively (decrease or eliminate each other's amplitude).  
This is a phenomenon common to all kinds of wave 
mechanics from water waves to optics.  The well known 
double slit experiment demonstrates empirically that at the 
quantum level interference also applies to the probability 
waves of quantum mechanics.  As a simple example, 
suppose that the wave function described in Section 2.2 is 
represented in vector form as 

 

12 =∑
i

ic  
 

In the Dirac notation, the probability that a quantum state 
ψ  will collapse into an eigenstate iφ  is written 

2
 and is analogous to the dot product (projection) of 

two vectors.  Consider, for example, a discrete physical 
variable called spin.  The simplest spin system is a 
two-state system whose basis states are usually represented 
as 

ψφi

↑  (spin up) and ↓  (spin down).  In this simple 
system the wave function ψ is a distribution over two 
values (up and down) and a coherent state ψ  is a linear 
superposition of ↑  and ↓ .  One such state might be 

 









=

1
2

5
1ψ  

 

and suppose that it is operated upon by an operator  
described by the following matrix, 

Ô 

↓+↑=
5

1
5

2ψ  
 









−

=
11

11

2
1Ô  

 

As long as the system maintains its quantum coherence it 
cannot be said to be either spin up or spin down.  It is in 
some sense both at once.  Classically, of course, it must be 
one or the other, and when this system decoheres the result 
is, for example, the ↑  state with probability  

 

The result is 
 









=





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
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and therefore now 
 

↓+↑=
10
1

10
3ψ  

 

Notice that the amplitude of the ↑  state has increased 
while the amplitude of the ↓  state has decreased.  This is 
due to the wave function interfering with itself through the 
action of the operator – the different parts of the wave 
function interfere constructively or destructively according 
to their relative phases just like any other kind of wave. 
 
To summarize, quantum computation can be defined as 
representing the problem to be solved in the language of 
quantum states and producing operators that drive the 
system to a final state such that when the system is 
observed there is a high probability of finding a solution.  
 
3  Quantum Neural Computing 
 
Researchers are beginning to investigate the potential for 
combining quantum computation with (classical) neural 
computation.  An interesting set of mathematical analogies 
between neural network theory and quantum computation 
has been presented by Perus [6]. Narayanan and Meneer 
have simulated classical and various approaches to quantum 
neural networks, comparing their performances [7]. Their 
work suggests that there are indeed certain types of 
problems for which quantum neural networks will prove 
superior to classical ones.  Hogg has extended the work of 
Grover to demonstrate applications for quantum search and 
optimization in the context of combinatorial search, 
something common in computational learning methods [8].  
This immediately suggests the possibility of an interesting 
if modest speedup [ ( )NO ] of existing classical algorithms 
based on combinatorial search.  Other relevant work 
includes quantum decision making [9], which combines 
classical and quantum neural networks; alternative quantum 
learning models [10], which again demonstrate that 
quantum learning algorithms are theoretically provably 
superior to classical ones in certain situations; quantum 
Hopfield networks [11]; and quantum associative memories 
[12] [13] [14].  Also, preliminary work has been done 
considering quantum competitive learning [15] and learning 
of quantum operators [16]. 
 
4  Entanglement 
 
Entanglement is the potential for quantum systems to 
exhibit correlations that cannot be accounted for classically.  
From a computational standpoint, entanglement seems 
intuitive enough – it is simply the fact that correlations can 
exist between different qubits – for example if one qubit is 
in the 1  state, another will be in the 1  state.  However, 

from a physical standpoint, entanglement is little 
understood.  The questions of what exactly it is and how it 
works are still not resolved.  What makes it so powerful 
(and so little understood) is the fact that since quantum 
states exist as superpositions, these correlations exist in 
superposition as well.  When the superposition is destroyed, 
the proper correlation is somehow communicated between 
the qubits, and it is this “communication” that is the crux of 
entanglement.  Mathematically, entanglement may be 
described using the density matrix formalism.  The density 
matrix ψρ  of a quantum state ψ  is defined as 
 

ψψρψ =  
 

For example, the quantum state 
 

01
2

100
2

1
+=ξ  

 

appears in vector form as 
 



















=

0
0
1
1

2
1ξ  

 

and it may also be represented as the density matrix 
 



















==

0000
0000
0011
0011

2
1ξξρξ  

 

while the state 
 

11
2

100
2

1
+=ψ  

 

is represented as 
 



















==

1001
0000
0000
1001

2
1ψψρψ  

 

and the state 
 

11
3

101
3

100
3

1
++=ζ  

 

is represented as 
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

















==

1011
0000
1011
1011

3
1ζζρζ  

m

xn

n

x 0
2
1 12

0








∑
−

=
 

 

The parenthesis are not necessary in the above expression 
but are used to emphasize that the two registers are not 
entangled at this point.  In other words, knowing a value in 
one of the registers gives no information about the value in 
the other.  We can then apply F̂  to the two registers, 
effectively computing the value of f for all inputs in parallel  

 

where the matrices and vectors are indexed by the state 
labels 00, ..., 11. Now, notice that ξρ  can be factorized as 
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where ⊗ is the normal tensor product. On the other hand, 
ψρ  can not be factorized.  States that can not be factorized 

are said to be entangled, while those that can be factorized 
are not.  Notice that can be partially factorized two 
different ways, one of which is  

ζρ

 

Finally, we can observe (only!) the second register causing 
it to collapse to one of its basis states, in this case to one of 
the periodic functional values k .  Due to entanglement, 
the first register will also be affected, even though we do 
not directly observe it.  The resulting quantum state is   
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
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
∑

=)(|2
 

 

revealing the period r (within an additive constant) of f.  
Notice that again the two registers are not entangled.  This 
process is a vital part of several interesting quantum 
algorithms, most notably Shor’s famous algorithm for 
prime factorization.  The key to the process is the 
entanglement generated in the system by applying the F̂  
operator, producing correlations between different parts of 
the system (between the input and output registers in this 
case).  

 

(the other contains the factorization of ξρ  and a different 
remainder); however, in both cases the factorization is not 
complete.  Therefore,  is also entangled, but not to the 
same degree as 

ζρ
ψρ  (because  can be partially factorized 

but 
ζρ

ψρ  cannot).  Thus there are different degrees of 
entanglement and much work has been done on better 
understanding and quantifying it [17] [18].  It is interesting 
to note from a computational standpoint that quantum states 
that are superpositions of only basis states that are 
maximally far apart in terms of Hamming distance are those 
states with the greatest entanglement.  For example, ψρ  is 
a superposition of only the states 00 and 11, which have a 
maximum Hamming spread, and therefore ψρ  is 
maximally entangled.  Finally, it should be mentioned that 
while interference is a quantum property that has a classical 
cousin, entanglement is a completely quantum phenomenon 
for which there is no classical analog. 

 
In neural computing, correlations between parts of the 
system are typically effected by weighted connections 
between processing elements.  For example, consider the 
simple feed forward classifier of Figure 1.  
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>1.5

+1

x

W

h

Z

y

>0

+1+1
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5  Entanglement in Quantum Neural Computing 
 
As an example of the power of entanglement, consider a 
periodic function f with period r.  Suppose that we have 
access to a quantum computer with two quantum registers 
of length n and m respectively, initially in the state 

mn 00 .  Further suppose that we know a quantum 
operator F̂  for calculating f, taking the input from the first 
register and putting the output in the second register.  We 
can load the first register with a superposition of all 
possible states, representing all possible inputs (of length 
n).  This gives  

Figure 1: Simple feedforward classifier network. 
 

Choosing an input vector x for the network determines the 
values of the hidden layer units h via the weight matrix W,  
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which in turn determines the values for the output vector y 
via the weight matrix Z (thresholding shown in the nodes).  
We can write this as y = Zτ(Wx) where τ is a thresholding 
function.  The combination of connection weights and 
thresholding functions describes the correlations in the 
network.  This network computes the XOR function, and 
for example, the input x = 11 results in the output 
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Alternatively, three qubits in the entangled state 
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2
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2
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2
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2
1

+++=φ  
 

can also be interpreted as computing the XOR function (a 
quantum algorithm for producing such an entangled state is 
given in [19]).  The first two qubits encode the input and 
the third encodes the output.  The requisite correlations for 
computing the function are encoded in the entanglement of 
the state.  Computing the value for the input x requires 
forcing the first two qubits to have a high probability of 
being found in the basis state x .  This can be done 
probabilistically (in this case with a 25% chance of success) 
by simply measuring the first two qubits, forcing them to 
collapse to a basis state.  If they are measured and found in 
the state x , then due to entanglement, the value of the third 
qubit will be )(XOR x  with unit probability.  The 
probability of finding the input qubits in the x  state can 
be improved to unity if the operator 
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followed by the operator 
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is applied to the state φ  before measuring the input 
qubits.  Here the rows and columns of  and  are 
labeled with binary strings corresponding to the basis states 
of the quantum system; i, j, x, and z are binary strings; and 

i = xz means that the binary string i is equal to the binary 
string x concatenated with the binary string z.  Thus  

xR̂ D̂

 

φxRDy ˆˆ=  
 

effects the same functionality as the neural network 
representation above.  Repeating the example of computing 
the output for x = 11,  
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and therefore,   
 

110

0
1
0
0
0
0
0
0

       

0
1

1
0
1
0
0
1

2
1

00000000

0
2
1

2
10

2
100

2
1

0
2
1

2
10

2
100

2
1

00000000

0
2
1

2
10

2
100

2
1

00000000
00000000

0
2
1

2
10

2
100

2
1

       

0
1
1
0
1
0
0
1

2
1

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

ˆ

=

































=

































−





































−

−

−

−

=

































































−
−

= Dy

 

 

Proceedings of the International Joint Conference on Neural Networks, pp. 1565-1570, 2001



The input qubits are indeed in the basis state 11 , and the 
output qubit is in the appropriate basis state .0   The 
operators  and are designed to produce the state xR̂ D̂ 11  
in the input qubits regardless of the state of the output qubit.  
Correct computation of the XOR function requires the 
proper correlation between the input and output qubits.  The 
presence of the appropriate entanglement in the system 
guarantees this correlation.     
 
In the case of neural networks, changes local to one part of 
the network (changing a weight or a threshold or an input) 
can have global effects on the network.  Similarly, for 
entangled quantum states local operations on some qubits 
indirectly affect the states of all qubits in the system. 
 
6  Conclusion 
 
The phenomenon of entanglement in quantum systems can 
be viewed as playing a role similar to that of weighted 
connections in a classical neural network, producing 
correlations between different parts of the system.  
Entanglement is little understood from a physical 
standpoint, but computationally it has been identified as 
playing a key role in providing quantum computation its 
unique power.  The preceding statements, when combined, 
suggest that quantum computational systems that make use 
of entangled states have the potential functionality of 
quantum neural networks.  It follows that just as quantum 
computation is provably superior to classical computation 
for some problems, it is conceivable that quantum neural 
networks may prove more powerful than their classical 
counterparts. 
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