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Abstract. A Fourier-based quantum computational learning algorithm with similarities to classical basis function 
networks is developed.  Instead of a Gaussian basis, the quantum algorithm uses a discrete Fourier basis with the output 
being a linear combination of the basis.  A set of examples is considered as a quantum system that undergoes unitary 
transformations to produce learning.  The main result of the work is a quantum computational learning algorithm that is 
unique among quantum algorithms as it does not assume a priori knowledge of a function f. 
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1 INTRODUCTION 
 
 The field of quantum computation investigates the power of the unique characteristics of quantum systems used 
as computational machines.  Early quantum computational successes have been impressive, yielding results that are 
classically impossible [1] [2] [3] [4].  It is therefore natural also to suspect the existence of quantum computational 
learning algorithms that do things classically impossible.  Classical Fourier analysis techniques have been used as an 
approach to computational learning, but the resulting algorithms must be bounded to avoid exponential time 
requirements.  Since quantum computation can offer an exponential speedup in processing time and since quantum 
computation often contains Fourier transforms as a key element, it is natural to consider a quantum analog to 
classical Fourier-based computational learning. 
 Basis function networks [5] [6] [7] [8] represent functions as linear combinations of nonlinear functions.  The 
most well-known employ a hidden layer of radial basis functions with a Gaussian response followed by an output 
layer of nodes with linear response.  That is, the hidden nodes' response is Gaussian based on their distance from the 
input stimulus, and the output nodes' response is a linear combination of the hidden node responses.  However, basis 
functions other than Gaussian can be used [9]. 

This paper considers one such approach, presenting a Fourier-based quantum learning algorithm.  It introduces 
a unique approach to computational learning, extending it into the quantum realm by considering a set of examples 
as a quantum system that undergoes unitary transformations to produce learning.  As a result, the paper demonstrates 
that quantum computational learning is a feasible and potentially fruitful area for research. 

An outline of the paper’s approach is as follows.  As an initial step, Section 2 presents an introduction to 
classical Fourier-based learning.  An intermediary step, discussed in Section 3, reinterprets the Fourier analytical 
approach as a linear algebraic formulation.  Section 4 reformulates the approach a final time as a quantum 
computational algorithm.  Section 5 provides some discussion of the proposed algorithm and focuses particularly on 
the issues of noise and generalization, and Section 6 concludes the paper final remarks and directions for further 
research. 
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2 FOURIER-BASED LEARNING 
 

Here is given a brief description of Fourier-based learning as it applies to our approach.  The subject of discrete 
Fourier analysis is well developed and is treated only very briefly here.  For a more in depth presentation see any 
book on Fourier analysis, for example [10]. 

A bipolar-valued binary function f: {0,1}n → {-1,1} can be represented as a Fourier expansion (the expansion 
used here is actually a simplified Fourier expansion called a Walsh transform) 
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and the Fourier coefficients being given by  
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Actually, in the general case Eq. 3 should use χ* (complex conjugate of χ); however, in the simplified case 
considered here (bipolar rather than complex output), χ* = χ.   
 Classical machine learning includes methods that employ such Fourier analytical methods for learning f by 
approximating a polynomial number of large Fourier coefficients [11] [12] [13].  In order to determine the set  of 
large coefficients, the methods require access to a membership oracle.  The large coefficients, 
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with  being a set of m carefully chosen examples of the form T )(xfx
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Finally, using the fact that the function can be at least weakly approximated [14] with a polynomial number of large 
coefficients (the set ) and using Eq. 4 to approximate those coefficients, the function f may be approximated by A
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We propose here a Fourier-based quantum learning algorithm that uses only an example oracle (i.e. a training set) 
rather than the membership oracle required by the classical machine learning techniques.  In other words, the 
classical machine learning approach requires the ability to choose which examples will be used to learn the function 
(which in typical learning problems we can not do); on the other hand, the method that is proposed here makes no 
such requirement -- a standard training set suffices. 
 

2.1 A Fourier Example 
 
A simple example will help illustrate the concept of a Fourier expansion.  Let n = 2 and 
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To calculate the Fourier basis functions use Eq. 2 and for example, 
 

( )
111)00( 0

00
0
0

00
=−=−=









χ  
 

and 
 

( )
111)11( 1

01
1
1

01
−=−=−=









χ  
 

The other fourteen values for the four Fourier functions are calculated similarly.  Next, calculate the Fourier 
coefficients using Eq. 3.  For example, 
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That is, 
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and the other coefficients are found in the same manner.  Finally, the Fourier expansion of f can be written using 
Eq. 1, 
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and solving for any of the values 00, 01, 10, or 11 will result in the appropriate output for f.  Now if instead of 
knowing f, we only have a training set such as 
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then the coefficients are approximated using Eq. 4 instead of Eq. 3.  For example now 
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which simplifies to 
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The Fourier expansion is now approximated using Eq. 5 instead of Eq. 1 
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Now solving for 00, 01, or 10 will give 4/3, 4/3, and -4/3 respectively.  While these are not the correct values, they 
are the correct sign.  On the other hand, solving for 11 results in 0, which is equivalent to “don’t know”.  This will 
be addressed further in Section 5. 
 
 

3 LINEAR ALGEBRAIC FORMULATION 
 

The next step is to reformulate the Fourier eq ations in matrix form.  Note that the u a
rχ  can be considered 

vectors in a 2n-dimensional space indexed by { }nx 1,0∈
r

.  These a
rχ  form an orthonormal basis for the function 

space with inner product 
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Again, in the general case one of the χ in Eq. 6 should be χ*, but for the special case of bipolar outputs χ* = χ.  Now 
let B be the matrix formed by taking the a

rχ  as the rows.  Because of the orthonormality of the basis, the columns 
are also formed by the a

rχ .  Also, define f as a vector in an 2n-dimensional space indexed by { }nx 1,0∈
r

 such that  
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gives the Fourier coefficients as a vector in a 2n-dimensional space indexed by { }na 1,0∈

r
 so that  
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To evaluate )(xa

rrχ , define y as the 2n-vector indexed by { }nb 1,0∈
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As in Section 2, f may be approximated proximating the Fourier coefficients using a set of m examples, T .  
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Then the Fourier representation of the approximate function is 
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3.1 A Linear Algebra Example 

 
For clarity, the example of Section 2.1 is repeated here using the matrix formulation.  According to Eq. 7 the 

function f is now written as a vector, 
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The matrix B is  
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and using Eq. 8 the Fourier expansion of f is now written 
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Now considering the case where the function is unknown but a training set is available, the approximate function 
represented by the training set is written as a vector using Eq. 13, 
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and the approximate Fourier transform is obtained from Eq. 14, 
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4 QUANTUM FORMULATION 
 

The final step is to exte d the vector representation into the quantum regime.  Given a set of n (where n is the 
length of the binary input 
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where the amplitudes 
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as a quantum state of the n qubits that describes the function f.  The domain of f is encoded in the state labels and the 
range of the function in the phases of the amplitudes.  Similarly, given a set of m examples T , define 
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where again the amplitudes are defined as in Eq. 16.  This quantum state of the n qubits describes the partial 
function f

~
.  Next, define the operator  as the matrix B multiplied by the normalization constant B̂ n21  and note 

that it acts on a quantum state, transforming it from the x
r

 basis to the Fourier basis, a
rχ .  Now that transformation 

takes the form 
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slightly abusing the hat notation by using it to symbolize both an operator and the quantum state vector associated 
with the Fourier expansion of f.  Similar to Eq. 11 
 
 χ=xB

rˆ  (20)  
 
results in a quantum state that contains in its amplitudes the values of all Fourier basis functions for the input x

r
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Finally, 
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represents the full function and 
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represents an approximation of the function from T .   
 

4.1 A Quantum Example 
 
 Finally, the example of Section 2.1 is repeated using the quantum formulation.  According to Eq. 15 the 
function f is now written as a quantum superposition, 
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The operator  is  B̂
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and using Eq. 18 the Fourier expansion of f is now written 
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Now considering the case where the function is unknown but a training set is available, the approximate function 
represented by the training set is written as a quantum superposition using Eq. 17, 
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and the approximate Fourier transform is obtained from Eq. 19, 
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Note that because of the unique statistical nature of quantum systems, the amplitudes are not the exact Fourier 
coefficients now, but are instead proportional to them.   
 

4.2 A Quantum Fourier-based Learning Algorithm 
 
As any quantum algorithm is effected by applying operators to a quantum system, to describe such an algorithm, we 
must identify and describe the operators necessary to produce the algorithm.  Equations 17 and 22 describe a 
quantum algorithm for Fourier-based inductive learning, given a set of functional examples T  and an appropriate set 
of qubits.  The requisite operators are T̂ , , and , for preparing the state described in Eq. 17, for performing the 
Walsh transform, and for observing the system respectively.  Since  is actually the well-known Hadamard 
transform used in many quantum algorithms and since observation is achieved by measuring some property of the 
system (and is also present in all quantum algorithms), we will not discuss them further here.  Description of the 

B̂ Ô
B̂

T̂  
operator is non-trivial and is treated in detail in [15].  Here it suffices to say that it has been shown that the T̂  
operator can be implemented with a polynomial (in m) number of basic quantum operators all of which operate on 
one, two or three qubits. 
 Finally, we assume (as do all proposals for quantum algorithms) that preparation of the quantum system into 
specific basis states, such as 0

v
 and xv  present no theoretical challenges (though technological obstacles may be 

significant). 
 
 

5 GENERALIZATION 
 
A crucial consideration for any learning algorithm is its generalization capability.  Here we note that the algorithm 
as described in Section 4 has, in fact, no generalization capability and perfectly memorizes the training set.  To see 
this, recall from Eq. 22 that  
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Note that up to a normalization constant, this results holds for both the Fourier-analytical and linear algebraic 
descriptions as well if nA 2=  (where  is the set of coefficients discussed in Section 2), that is, if all Fourier basis 
functions are included in the approximation of f.  To illustrate, we continue the example of Section 4.1 (2.1 and 3.1 
are analogous).  Calculating the approximate value for 00 or 01 or 10 will demonstrate the non-zero case in Eq. 23; 
for 00, using Eq. 22 we have 
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As an example of the zero case, we calculate the approximate value for 11.   Again, using Eq. 22 
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Recall that f: {0,1}n → {-1,1} and therefore )(xf

r
 can never equal 0.  Therefore, approximating f by approximating 

all 2n Fourier coefficients results in memorization of the training set (up to the sign of the output) and no 
generalization whatsoever on new inputs.   
 Generally in the quantum system all basis states are present (corresponding to nA 2=  for the non-quantum 
cases).  The result is that equation Eq. 22 is not really approximating the Fourier coefficients of the original 2-valued 
function  
f:{0,1}n → {-1,1} but rather is computing the Fourier coefficients of a 3-valued function f

~
:{0,1}n → {-1,0,1}, 

which has the same large coefficients as f, except that they are normalized by an exponential factor.   
  The end result is that given the proposed algorithm and a perfect quantum system no generalization is possible.  
However, it is well-known that quantum systems are noisy, easily perturbed and prone to some level of decoherence.  
If we can assume that such disturbances are random and have a more pronounced affect upon basis states with 
smaller amplitudes, then the fact that quantum systems are noisy becomes a boon rather than a detriment.  This is 
because due to the nature of the Fourier transform, those basis states with the largest amplitudes are most correlated 
with the function f.  Therefore, small random perturbations of the system serve to break the system symmetry around 
novel functional values, and the basis states most robust with respect to the perturbations, being highly correlated 
with f, provide a large probability of reasonable generalization on those novel inputs. 

 
 

6 CONCLUSION 
 
Classical Fourier-based learning methods can be extended into the quantum domain and one such possibility has 
been presented.  While classical Fourier-based approaches are limited by their dependence on a membership oracle, 
the proposed algorithm works using only an example oracle, providing potentially significant advantage over its 
classical counterparts.  Classical machine learning approaches that employ Fourier-analytical methods achieve an 
ability to generalize on novel data at least in part due to the fact that not all the Fourier coefficients are used in the 
approximation.  However, in the general case for the quantum algorithm, all of the Fourier coefficients are used in 
the approximation (and indeed, this cannot be avoided).  It is therefore proposed that the noise inherent in quantum 
systems may actually facilitate generalization for the quantum Fourier-based algorithm presented here.  In order to 
investigate this possibility, ongoing work includes simulation of the algorithm on classical computers and analysis 
qualifying and quantifying system noise conducive to useful generalization. 
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