
Implementing Competitive Learning in a Quantum System

Dan Ventura
fonix corporation

dventura@fonix.com
http://axon.cs.byu.edu/Dan

Abstract
Ideas from quantum computation are applied to the field of
neural networks to produce competitive learning in a
quantum system. The resulting quantum competitive
learner has a prototype storage capacity that is
exponentially greater than that of its classical counterpart.
Further, empirical results from simulation of the quantum
competitive learning system on real-world data sets
demonstrate the quantum system’s potential for excellent
performance.

Introduction
Competitive learning networks perform classification tasks
by comparing input patterns with pattern prototypes
encoded in the network weights [5] [8]. The basic idea is
that the prototype that most closely resembles the input
pattern (according to some metric) is determined, and the
class associated with that prototype is output as the class
of the input pattern (see Figure 1).

1 -1 1 -1 1 -1

InputPattern

Output Class

Figure 1. Classical Hamming net storing two
patterns

The rapidly developing field of quantum computation has
produced some fascinating results that are not possible
using classical computational methods. The possibility of
applying quantum computational ideas to the field of
neural networks is an intriguing one and is beginning to be

explored [1] [7] [12]. This paper investigates the
possibility of developing a quantum analog of a classical
competitive learning network.

The quantum competitive learner developed here makes use
of the unique characteristics of quantum mechanical
systems to achieve a prototype storage capacity that
exponentially exceeds that of classical competitive
networks. The result is a quantum competitive learning
system that is based on the Hamming distance metric.

The rest of the paper introduces some key concepts from
quantum mechanics, briefly discusses some of the well-
known quantum algorithms, and then details a quantum
version of competitive learning. Preliminary empirical
results (obtained through simulation on a classical
computer) are presented, and these results demonstrate that
a quantum competitive learning system is indeed capable of
performance that is impossible with a classical system.
Some discussion of the intuition behind the algorithm is
provided and directions for further work are discussed.

Quantum Concepts
Quantum computation is based upon physical principles
from the theory of quantum mechanics, which is in many
ways counterintuitive. Yet it has provided us with perhaps
the most accurate physical theory ever devised. The theory
is well-established and is covered in its basic form by
many textbooks (see for example [3]). Several ideas are
briefly reviewed here.

Linear superposition is closely related to the familiar
mathematical principle of linear combination of vectors.
Quantum systems are described by a wave function ψ that
exists in a Hilbert space. The Hilbert space has a set of
states, φi , that form a basis, and the system is described
by a quantum state,

ψ = ci
i
∑ φi (1)

Proceedings of the International Joint Conference on Neural Networks, paper 513, 1999

ψ is said to be in a linear superposition of the basis
states φi , and in the general case, the coefficients ci may
be complex. Use is made here of the Dirac bracket
notation, where the ket ⋅ is analogous to a column
vector, and the bra ⋅ is analogous to the complex
conjugate transpose of the ket.

Coherence and decoherence are closely related to the idea of
linear superposition. A quantum system is said to be
coherent if it is in a linear superposition of its basis states.
According to quantum mechanics, if a coherent system
interacts in any way with its environment, the
superposition is destroyed. This loss of coherence is called
decoherence and is governed by the wave function ψ. The
coefficients ci are called probability amplitudes, and ci

2

gives the probability of ψ collapsing into state φi if it
decoheres. Note that the wave function ψ describes a real
physical system that must collapse to exactly one basis
state. Therefore, the probabilities governed by the
amplitudes c i must sum to unity. This necessary
constraint is expressed as the unitarity condition

ci
2

i
∑ = 1 (2)

Consider, for example, a discrete physical variable called
spin. The simplest spin system is a two-state system,
called a spin-1/2 system, whose basis states are usually
represented as ↑ (spin up) and ↓ (spin down). In this
system the wave function ψ is a distribution over two
values and a coherent state ψ is a linear superposition of
↑ and ↓ . One such state might be

ψ = 2

5
↑ + 1

5
↓ (3)

As long as the system maintains its quantum coherence it
cannot be said to be either spin up or spin down. It is in
some sense both at once. When this system decoheres the
result is, for example, the ↑ state with probability
(2 5)2 = 0.8.

A simple two-state quantum system, such as the spin-1/2
system just introduced, is used as the basic unit of
quantum computation. Such a system is referred to as a
quantum bit or qubit, and renaming the two states 0 and
1 , it is easy to see why this is so.

Operators on a Hilbert space describe how one wave
function is changed into another. Here they will be
denoted by a capital letter with a hat, such as Â , and they
may be represented as matrices acting on vectors. Using
operators, an eigenvalue equation can be written
Â φi = ai φi , where ai is the eigenvalue. The solutions

φi to such an equation are called eigenstates and can be
used to construct the basis of a Hilbert space as discussed
above. In the quantum formalism, all properties are
represented as operators whose eigenstates are the basis for
the Hilbert space associated with that property and whose
eigenvalues are the quantum allowed values for that
property. Operators in quantum mechanics must be linear
and further, operators that describe the time evolution of a
state must be unitary so that Â† Â = ÂÂ† = Î , where Î is
the identity operator, and Â† is the complex conjugate
transpose of Â .

Interference is a familiar wave phenomenon. Wave peaks
that are in phase interfere constructively while those that
are out of phase interfere destructively. This phenomenon
is common to all kinds of wave mechanics from water
waves to optics, and the well-known double slit
experiment proves empirically that interference also applies
to the probability waves of quantum mechanics.

Quantum Algorithms
The field of quantum computation offers exciting
possibilities -- the most important quantum algorithms
discovered to date all perform tasks for which there are no
classical equivalents. For example, Deutsch’s
algorithm [2] is designed to solve the problem of
identifying whether a binary function is constant (function
values are either all 1 or all 0) or balanced (the function
takes an equal number of 0 and 1 values). Deutsch’s
algorithm accomplishes the task in order O(1) time, while
classical methods require O (2 n) time. Simon’s
algorithm [10] is constructed for finding the periodicity in
a 2-1 binary function that is guaranteed to possess a
periodic element. Here again an exponential speedup is
achieved; however, admittedly, both these algorithms have
been designed for artificial, somewhat contrived problems
as a proof of concept. Grover’s algorithm [4], on the other
hand, provides a method for searching an unordered
quantum database in time O(2n), compared to the
classical lower bound of O(2n). Here is a real-world
problem for which quantum computation provides
performance that is classically impossible. Finally, the
most well-known and perhaps the most important quantum
algorithm discovered so far is Shor’s algorithm for prime
factorization [9]. This algorithm finds the prime factors of
very large numbers in polynomial time, while the best
classical algorithms require exponential time.

Quantum Competitive Learning
A quantum algorithm is represented as a series of operators
operating on a quantum system beginning from some
initial state. Here the quantum system we will consider is

Proceedings of the International Joint Conference on Neural Networks, paper 513, 1999

a set of n+q qubits, corresponding to binary input patterns
of length n and binary patterns of length q that represent
corresponding output classes. The system’s initial state
will be 0 , the single basis state corresponding to all the
qubits being in the 0 state.

There are two major parts to the classical algorithm --
initializing the network weights and pattern classification
-- and both can be implemented using quantum operators.
First, the information carried in the weights of a classical
system is represented in the quantum wave function’s
coefficients. Therefore, the quantum analog to initializing
the network’s weights is the time evolution of the
quantum wave function such that the basis states with non-
zero coefficients correspond to the prototypes to be stored
in the system. In other words, given a set P of prototype
patterns, we require a wave function ψ such that

ψ = 1

m
p

p∈P
∑ (4)

where m is the number of patterns in the set P . This
initialization of a quantum state is a process that is beyond
the scope of this paper. However, an efficient quantum
algorithm for doing something slightly more general is
detailed in [11], and a slight modification presented in [12]
accomplishes this specific initialization. Here we represent
this entire initialization process as the single operator P̂,

P̂ 0 = ψ = 1

m
p

p∈P
∑ (5)

Less formally, the P̂ operator transforms the single basis
state 0 state to the desired wave function ψ which
represents all of the prototypes in the set P.

The second part of the algorithm, pattern classification, is
accomplished with a combination of two operators, which
will be represented here as matrices indexed by row and
column, corresponding to the system basis states. Given a
test pattern z of length n, the first of these operators, R̂, is
defined as

R̂ = rij =

1 if i = j, h z, in() ≥ n − α

−1
if h z, in() ≥ n − α , h z, jn() ≥ n − α ,

h z, in() ≥ h z, jn()
0 otherwise


















(6)

where n is the number of binary inputs, in is represents the
first n bits of i, h returns the Hamming distance between
two binary patterns, and α is a threshold indicating how
close potential patterns must be to z in order to compete.
The non-zero diagonal entries in the matrix indicate which
states can compete within the restrictions of the threshold
α. The non-zero off-diagonal elements represent extra
inhibition for patterns with lower Hamming distance from
z over those with higher Hamming distance from z.

The second operator, T̂ , is defined as

T̂ = tij =

1 if i = j and ∃p
p ∈P , p ≡ x → c,

h x, in() = n











0 otherwise














(7)

This operator will have non-zero entries only on the
diagonal and only corresponding to prototypes. This
operator ensures that some legal prototype is the winner of
the competition. Now taking ψ obtained from Equation
(5), the classification phase of the algorithm can be written

ψ = T̂R̂ ψ collapse → p (8)

with the collapse due to observation of the quantum
system. Recall that operator precedence is right to left and
since the R̂ and T̂ operators do not commute, their order
is important. When the system is observed, it will
collapse into one of the basis states corresponding to some
prototype p ≡ x → c , whose output class c will be taken
as the classification of the input pattern z.

To express the dynamics of prototype competition
informally, we can say that competition between prototype
patterns occurs through the interference in the wave
function induced by the operators and ultimately through
decoherence and wave function collapse. The quantum
algorithm can be summarized as in Figure 2.

1.

2.

3. observe

ψ = P̂ 0

ψ = T̂R̂ ψ

ψ

Figure 2. Algorithm for Quantum Competitive
Learning

Proceedings of the International Joint Conference on Neural Networks, paper 513, 1999

At this point, a simple example will help clarify much of
the preceding discussion. Suppose our set P of prototype
patterns is defined as

P =

10 → 1

11→ 0








(9)

so that n = 2, and suppose we would like to classify the
input pattern z = 00. Step one of the algorithm, using
Equation (5), will result in

P̂ 0 = ψ = 1
2

101 + 1
2

110 (10)

For convenience, this may be rewritten in vector notation
as

ψ = 0, 0, 0, 0, 0,1,1, 0()T (11)

Where T indicates the vector transpose, and the vector
entries correspond to wave function coefficients for the
basis states 000 , 001 L 111 . Using α = 1, calculating
the R̂ operator gives

R̂ =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0

−1 −1 0 1 0 0 0 0

−1 −1 0 0 1 0 0 0

−1 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

































(12)

where rows and columns of the matrix are indexed in the
same manner as the vector of Equation (11). Now, the
first part of step 2 (Equation (8)) of the algorithm applies
R̂ to the wave function obtained in Equation (10). The
resulting wave function has non-zero coefficients for those
basis states representing candidate patterns in the
competition.

ψ = R̂ ψ =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 −1 1 0 0 0 0 0

−1 −1 0 1 0 0 0 0

−1 −1 0 0 1 0 0 0

−1 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

































0

0

0

0

0

1

1

0































=

0

0

0

0

0

1

0

0































(13)

Which is equivalent to the wave function notation

ψ = 101 (14)

In this simple example, there is only one competing
pattern, so we are in essence done. However, in general
there will be multiple competing patterns, and some of
those patterns may be spurious in the sense that they do
not occur in the original set P . The purpose of the T̂
operator is to remove these spurious patterns from the
competition. Calculating the T̂ operator in this case gives

T̂ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

































(15)

The second half of step 2 of the algorithm applies this
operator to the wave function from Equation (13) resulting
in

ψ = T̂ ψ =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

































0

0

0

0

0

1

0

0































=

0

0

0

0

0

1

0

0































(16)

which in this case does not change the wave function. In
other words, we still have

ψ = 101 (17)

 The final step of the algorithm, observing the system,
will result in the system’s collapsing to the basis state
101 . Examining the third qubit will give us the output

class 1 so that we may now classify the pattern z as
00 → 1. Notice that examining the first two qubits gives
the prototype chosen as the closest match to z and therefore
provides some justification for the chosen classification.

Proceedings of the International Joint Conference on Neural Networks, paper 513, 1999

Results
Since quantum system dynamics can be simulated on a
classical computer at the cost of an exponential slowdown,
a simulation has been developed for the quantum
competitive learning system. Several real-world problems
of modest size were obtained from the UCI machine
learning data repository [6] and were used to test the pattern
recall and classification accuracy of the quantum
competitive learning system.

Table 1 reports results for simulations run using three real-
world data sets. The first column indicates the number of
quantum neurons used to store the competing prototype
patterns, and the second indicates the number of competing
patterns stored by these neurons. The third column
indicates the number of output classes associated with the
problem. The fourth and fifth columns report accuracies
on classifying patterns from a training set and test set
respectively. All classification results were obtained using
ten-fold cross validation, and because quantum systems are
probabilistic in nature, each experiment was repeated ten
times with the results averaged to obtain a more accurate
representation. Notice that the storage ability (number of
prototype patterns) of the quantum competitive learner is
vastly superior to that possible classically. It should be
noted that training set recall is not perfect for the LED and
Hayes data sets due to the fact that these datasets contain
inconsistencies (identical patterns with conflicting output
classes). Further improvement in test set accuracy is
possible by making use of weighted features rather than the
simple Hamming distance metric. For example, using just
a simple mapping of the last 2 features in the Lenses
dataset boosts test set accuracy to 0.88.

Table 1. Classification Accuracy

#Neurons #Patterns #Classes Train Test

Hayes: 10 83 3 0.91 0.46
LED: 11 180 10 0.75 0.56
Lenses: 7 23 3 1.00 0.62

Conclusions
Ideas from classical neural network theory are recast in a
quantum computational framework, using the language of
wave functions and operators. The unique characteristics of
quantum systems are utilized to produce a quantum
competitive learning network capable of storing
exponentially more prototype patterns than is possible
classically. This demonstrates that quantum computational
ideas can be combined with concepts from the field of
neural networks to produce useful and interesting results.
Simulations using real-world data show that the quantum

competitive learner performs very favorably during pattern
recall.

Ongoing work is focused on discovering new operators to
improve performance by weighted feature discovery.
Future work includes searching for further applications of
quantum computation to neural networks and generally
further developing the field of quantum computational
learning.

References
[1] Behrman, E., J. Niemel, J. Steck and S. Skinner, “A
Quantum Dot Neural Network”, Proceedings of the Workshop
on Physics of Computation, pp. 22-24, 1996.

[2] Deutsch, D. and R. Jozsa, “Rapid Solution of Problems
by Quantum Computation”, Proceedings of the Royal Society,
London A, v439, pp. 553-558, 1992.

[3] Feynman, Richard, R. Leighton and M. Sands, T h e
Feynman Lectures on Physics, v3, Addison-Wesley, 1965.

[4] Grover, Lov, “A Fast Quantum Mechanical Algorithm for
Database Search”, Proceedings of the ACM Symposium on the
Theory of Computing, pp. 212-19, 1996.

[5] Lippman, R.P., “An Introduction to Computing with
Neural Nets”, IEEE ASSP Magazine, v4, pp. 4-22, 1987.

[6] Mertz, C. J. and P. M. Murphy, UCI Repository of
Machine Learning Databases, University of California at
Irvine, Department of Information and Computer Science,
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1996.

[7] Perus, Mitja, “Neuro-Quantum Parallelism in Brain-Mind
and Computers”, Informatica, v20, pp. 173-183, 1996.

[8] Rumelhart, D.E and D. Zipser, “Feature Discovery by
Competitive Learning”, Cognitive Science, v9, p. 75-112,
1985.

[9] Shor, Peter, “Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer”, SIAM Journal of Computing, v26, pp. 1484-
1509, 1997.

[10] Simon, D., “On the Power of Quantum Computation”,
SIAM Journal of Computation, v26, pp. 1474-83, 1997.

[11] Ventura, Dan and Tony Martinez, “Initializing the
Amplitude Distribution of a Quantum State”, submitted to
Physical Review A, May 1999.

[12] Ventura, Dan and Tony Martinez, “Quantum Associative
Memory”, Information Sciences, to appear, 1999.

Proceedings of the International Joint Conference on Neural Networks, paper 513, 1999

