
Proceedings of the International Joint Conference on Neural Networks, pp. 1036-41, May 1998

Optimal Control Using a Neural/Evolutionary Hybrid System

Dan Ventura and Tony Martinez
Neural Network and Machine Learning Laboratory (http://axon.cs.byu.edu)

Department of Computer Science, Brigham Young University, Provo, UT 84602 USA

One of the biggest hurdles to developing
neurocontrollers is the difficulty in establishing good
training data for the neural network. We propose a hybrid
approach to the development of neurocontrollers that
employs both evolutionary computation (EC) and neural
networks (NN). EC is used to discover appropriate
control actions for specific plant states. The survivors of
the evolutionary process are used to construct a training
set for the NN. The NN learns the training set, is able to
generalize to new plant states, and is then used for
neurocontrol. Thus the EC/NN approach combines the
broad, parallel search of EC with the rapid execution and
generalization of NN to produce a viable solution to the
control problem. This paper presents the EC/NN hybrid
and demonstrates its utility in developing a
neurocontroller that demonstrates stability, generalization,
and optimality.

1. Introduction

Any system developed for control of an external plant
should possess certain characteristics. For instance, the
system should prevent the plant state from oscillating or
“pinging”, maintaining instead a smooth, stable trajectory
for all plant state variables. Also, the control system will
hopefully generalize not only to novel plant states, but
also to reasonable changes in plant parameters. Finally,
the controller should faithfully track the desired trajectory
of plant output variables, maintaining plant operation at
or near optimal levels according to some metric for
performance level. To summarize, any controller should
possess the following characteristics:

• Stability,
• Generality,
• Optimality.

Although neural networks (NN) possess great potential
for the control of complex systems, the field of
neurocontrol faces difficult problems as well. One of the
most difficult involves proper training of NN for control
of complex systems, which is a complicated endeavor
when the system to be controlled is open-loop unstable.
This paper extends and improves a method first proposed

in [12] for combining evolutionary computation (EC) [3]
with NN to control such a system. The broad, parallel
search capabilities of the EC are employed to find regions
of the system state space that are stable, and the survivors
of the evolution constitute the training set used to train
the NN for use as a neurocontroller. The goal of this
paper is to show that controllers developed using this
method do exhibit the desired characteristics listed above.

Combination of NN and EC technology is becoming
more prevalent and usually focuses on using EC to
develop the architecture (the weights, the topology, or
both) of the NN. For example see [2], [4], [9], and [13].
On the other hand, the work presented here presupposes
some NN architecture and focuses on using EC to develop
a training set suitable for training the NN. It extends
previous work done by the authors in which the
combination of EC and NN was used for optimization.
Though much less common, some work similar in flavor
to this approach does exist including [5], [6], and [8].

Section 2 describes the problem of training an NN for
system control and section 3 then describes the hybrid
EC/NN approach that is the main contribution of this
paper. Section 4 discusses applying this approach to the
well-known pole balancing problem and demonstrates
empirically that the controller developed possesses the
desired characteristics of stability, generality, and
optimality. Finally, section 5 provides conclusions and
directions for future work.

2. Problem description

Given a plant, Θ, the state of Θ may be described at
time t by a vector of status variables, st. Control of the
plant is effected by Γ which applies a control vector, c, to
Θ . That is, given a plant state at time t described by
vector st, the setting of the values of the vector c will
result in a different plant state at time t+δ described by the
vector st+δ. The problem is how should Γ be constructed
so that given a status vector, st, Γ outputs a control
vector c such that st+δ describes a better plant state, if
possible, than st? We assume the existence of some
evaluation function, f, that will determine whether or not
one plant state is better than another. The operation of Θ

may be either continuous or discrete and Γ has no
information about the internal dynamics of Θ . The only
information about Θ available to Γ is the value of st.
Given st, Γ is expected to output values for c, the goal
being to maximize f for any given instance (state) of Θ.
In earlier papers [10] [11], single iteration, open-loop
optimization type problems have been considered.

Plant Θ

Control Γ

maximize f(Status)

Initial Status of Θ

Status

st+δc
st

st

Figure 1. Control system with feedback

Here, we address the problem of continuous, closed
loop control using feedback (see figure 1). We assume
that the plant Θ to be controlled is open-loop unstable,
and the goal is to develop a neurocontroller for the Γ
component of the system that will optimize (in some
sense) the operation of the plant Θ. Since it is assumed
that the internal dynamics of the plant are unknown (if
they are known, a good controller may be developed using
conventional control theory), using a neural network that
learns to control the plant using only the externally
available information (plant state st) is a promising
option. However, we are still faced with a difficult
problem. Namely, neural networks usually learn
inductively by repeated exposure to preclassified examples.
What examples should be used for training the
neurocontroller? The following section details the use of
evolutionary computation and “black box” access to the
plant (that is, only the plant state st is available) to
develop a training set for the neurocontroller.

3. Using evolutionary computation to
produce a training set

Assuming that the status and control variables are
defined over even a modest range, it is obvious that the
input (status) and output (control) spaces will be
extremely large. Evolutionary computation lends itself
well to the exploration of large spaces. However, such
evolutionary exploration is often slow. If we assume that
the mapping s → c is nonrandom and in some sense
generalizeable, then a representative set of points may be
discovered via EC, and those points can then be used to
train a NN which may then generalize over the rest of the

function. The goal of the EC/NN synergism is to obtain
the accuracy of evolutionary search and the speed of neural
execution.

From the space spanned by s that describes Θ we
choose a representative set of plant states by choosing n
initial status vectors. We denote these i

t=0s , 0<i≤n and
refer to the plant described by state i

t=0s as i
t=0Θ , 0<i≤n.

These choices could be random or could be biased by any a
priori heuristics as to what constitutes a realistic or
desirable plant state (for example, see section 4). The
goal is to know, given one of these i

t=0s , what a “good”
c vector would be. For each of the i

t=0s , EC is used to
discover such a c in the following way.

Assume a fitness function f that takes as input a status
vector s and returns a real-valued fitness measure. Now
for each i

t=0s , randomly initialize a population of m
control vectors, denoted ck, 0<k≤m. Evaluate the initial
population by simulating the workings of i

t=0Θ for δ
time steps for each ck and then applying fitness function f
to i

t=δs . Next, until some stopping criterion is reached (a
maximum number of generations or a threshold fitness
value is achieved, for example), choose parents and use
genetic operators (crossover, mutation, etc.) to produce m
offspring, evaluate the children and select m survivors
from amongst the parents and children. Finally, for each
of the n populations, choose the individual, cmaxi

, (the
individual with the highest fitness) and build a set of n
training examples of the form i

t=0s → c m a x i
. The

algorithm is summarized in figure 2.

evolve ()
generate si
for each

initialize population ck, 0<k≤m.
evaluate (ck,Θi)
until(done)

select parents from ck
apply genetic operators to parents
evaluate (children,Θi)
ck

 ← choose m survivors

evaluate (c,Θi)
run for δ time steps with control c
return f()

i
t=0s

i
t=0Θ

i
t=δs

Figure 2. Algorithm for evolving training
set

The EC has now found “good” approximate
solutions for n points from the input (status) space but
can say nothing about any other points, many of which
are likely to be encountered during normal execution of Θ.

Obviously, one solution to the problem defined in section
2 would be to employ the evolutionary scheme discussed
above as the control Γ. However, this would likely be
unacceptable in terms of execution speed. Therefore, the
NN is employed to generalize over the entire space defined
by s using the relatively small set of approximate
solutions as a training set. While the initial training of
the network maybe somewhat time consuming, depending
on the network and training algorithm employed, the
generalization during execution will be extremely fast.
The synergistic combination of EC and NN is then
employed as the control Γ as in figure 3.

Γ

{si}

EC

NN

si → cmax

learning

s

c

Training
Set

execution

Random
choice

Figure 3. The control Γ

It should be noted that since many (if not most)
interesting control problems involve plants that are open-
loop unstable, care must be taken in the choice of the
parameter δ. On the one hand, if δ is too short, the effect
of applying the control to the system will not be readily
apparent. On the other hand, if δ is too long, the
instability of the plant will have destroyed any useful
measure of how good the control vector was.

The power of this EC/NN hybrid approach is its
combination of the thoroughness of evolutionary search
with the speed and accuracy of neural generalization.
Further, it is generally applicable to any control problem
for which a fitness function can be found and for which
“blackbox” access to the system to be learned (or to a
reasonable simulation) is possible. In order to provide
proof-of-concept, the next section discusses using the
EC/NN approach to solve one such control problem.

4. The pole balancing problem -- an
example

The pole balancing problem is a well known, textbook
example of a complex control system. The problem
exists in many variations, but perhaps the most common
consists of a pole attached by a hinge to a wheeled cart
that sits in a short track. The challenge is to apply force

to the cart in order to keep the pole upright and at the
same time not run the cart into the side of the track (since
that would of course cause the pole to fall). Figure 4
gives a simple diagrammatic representation.

Figure 4. The pole balancing problem

The system is inherently unstable and the solution is, of
course, a gentle oscillatory application of force in first one
direction and then the other. Other variations on this
theme include infinite length tracks, multi-jointed poles,
and multiple poles on the cart.

This system was simulated using both Euler and
Runge-Kutta approximations (with the integration time
step equal to .005 seconds) for solving the second order
differential equations that describe the pole/cart system.
For this simple problem, the physics is well understood
and the equations represent an extremely accurate
simulation of the cart and pole motion, including
accounting for friction between the pole and the cart and
between the cart and the track (see Appendix A for details).
A training set of 200 instances of the form θ , θ̇ , ˙̇θ() → F
was generated using the evolutionary method described in
section 3. The length of time, δ, allowed for system
stabilization during the evolutionary evaluation was set to
3 time steps (.015 seconds). As noted earlier, during
training set generation, any knowledge of which plant
states are more likely or more useful (stable) should be
incorporated into the evolutionary process in order to
concentrate on exploring those parts of the state-space that
will be most helpful for neural network generalization. In
the case of the pole balancer, we are most interested in the
those states in which the pole angle and its derivatives are
relatively small (since once any of these variables become
too large the pole will fall for sure due to the system
limitations on available force). Once the training set was
generated, it was used to train a simple backpropagation
[7] network with a single hidden node for 1000 epochs.
The learning rate was set to .5, and a momentum term
with a coefficient of .95 was also employed. To test the
controller, the pole was given several initial non-zero
angles and the system was expected to balance the pole.
Tests were performed over varying time increments from
30 seconds up to 15 minutes. In all cases, once the

controller stabilized the plant, there was no significant
deviation off optimal, deadbeat control. Figures 5 and 6
show the first 10 seconds of the trajectory of the pole’s
angular vertical displacement, θ , for two such tests
(initially θ = .4 radians ≈ 23° and θ = -.78 radians ≈ 45°
respectively).

Time

A
ng

le

-0.1

0

0.1

0.2

0.3

0.4

Figure 5. θ - t ra jectory over 10
seconds for initial pole angle of θ = .4
radians ≈ 23°

Time

A
ng

le

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 6. θ - t ra jectory over 10
seconds for initial pole angle of θ =
-.78 radians ≈ -45°

Both tests demonstrate nicely the controller’s ability to
stabilize the plant. Also, not only is the plant stable, but
also it can in several senses be considered to be optimal.
First, the number of initial oscillations required to
stabilize is just three, the minimum for stabilizing a
second order system. Second, the amplitude of those
oscillations is very small (maximum overshoot of 4.3
degrees for the -45 degree case, for example). Third, once
the plant is stable, it maintains “deadbeat” control right on
the desired trajectory of θ = 0°. Finally, since neither of
these initial plant states was encountered during training,
the control system demonstrates an ability to generalize to

previously unseen plant states. To further test the
system’s generalization ability, the plant parameter
corresponding to length of pole (see Appendix A) was
changed after training. In other words, the control was
trained with a pole of one length (1 meter) and tested with
poles of other lengths. Thus the control is required to
generalize not just to novel plant states but to a plant that
is different from the one it was trained to control. Figure
7 shows the first 20 seconds of the θ-trajectory for a 4
meter pole with an initial angle of θ = -.78 radians ≈ 45°.

Time
A

ng
le

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 7. θ-trajectory for 4 meter pole
with initial pole angle of θ = -.78
radians ≈ -45°

Notice that the controller is still stable, though the
response is not as good. This is, of course, to be
expected, but the important point is that a controller
trained on one plant is able to control another. Other
experiments were conducted altering pole mass, both pole
mass and pole length together, and the gravitational
constant, etc. (see Appendix B). In the case of altering the
gravitational constant, the controller performed very well
from .5g up to 1.25g, with little drop-off in response. In
other cases, some performance degradation is observed (as
in figure 7) as expected. Finally it should be mentioned
that because of the architecture of the EC/NN hybrid, it is
possible to continue generating training instances in the
background and to then improve the controller by on-line
learning. In fact, because of the existence of the fitness
function, the controller could monitor itself and note the
plant states for which its performance could be improved.
The controller could then request the EC to generate
training instances from regions of the state space near
these plant states.

5. Conclusions

A new evolutionary/neural hybrid approach for the
development of neurocontrol has been demonstrated. In
particular, it has been shown how evolutionary
computation and “black box” access to the plant can be
used to generate a suitable training set for training a neural
network to act as a controller of an inherently unstable
system. Further, the resulting controller has been
demonstrated to possess the desirable characteristics of

• Stability,
• Generalization, and
• Optimality.

Because many interesting control problems exist for
which the dynamics of the plant are unknown, neural
networks offer a viable approach to approximating desired
control of a plant. However, because many plants are
open-loop unstable, training the neural network for
control is difficult. The use of evolutionary computation,
along with a judicious choice of the stabilization
parameter δ facilitates the development of neurocontrol for
unstable systems. Currently, we are applying the
methods described here to the real world problem of
controlling the combination of engine and airframe for a
high performance military aircraft. Future work includes
quantifying the choice of δ, theoretical analysis and
quantification of stability limits, generalization
capabilities and optimality results, and combining these
techniques with those that evolve the network architecture.

Acknowledgments

The authors would like to thank George Lendaris and
Tad Shannon of Portland State University for many
insightful comments and helpful suggestions, as well as
for providing the code for the pole- cart simulation.

6. References

[1] Barto, Andrew G., Richard S. Sutton and Charles W.
Anderson, “Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems”, IEEE
Transactions on Systems, Man, and Cybernetics,
vol. smc-13, no. 5, September/October, 1983.

[2] Caudill, Maureen, “Evolutionary Neural Networks”, AI
Expert, vol. 6, no. 3, pp. 28-33, March 1991.

[3] Goldberg, D. E., Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley Publishing, 1989.

[4] Harp, S. A., T. Samad and A. Guha, “Designing
Application-Specific Neural Networks Using the
Genetic Algorithm”, NIPS-89 Proceedings, 1990.

[5] Miagkikh, V. V., A. P. Topchy and O. A. Lebedko, “Fast
Learning in Multilayered Networks by means of
Hybrid Evolutionary and Gradient Algorithms”,
Proceedings of the International Conference on
Evolutionary Computation and it Applications, pp.
390-8, June 1996.

[6] Montana, D. J. and L. Davis, “Training Feedforward Neural
Networks Using Genetic Algorithms”, Proceedings of
the Third International Conference on Genetic
Algorithms, 1989.

[7] Rumelhart, David E., James L. McClelland and the PDP
Research Group, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition,
MIT Press, 1986.

[8] Romaniuk, Steve G., “Evolutionary Growth Perceptrons”,
Genetic Algorithms: 5th International Conference
(ICGA-93) , S. Forrest (ed.), Morgan Kaufmann,
1993.

[9] Saunders, Gregory M., Peter J. Angeline and Jordan B.
Pollack “Structural and Behavioral Evolution of
Recurrent Neural Networks”, Advances in Neural
Information Processing Systems, vol. 6, pp. 88-95,
Morgan Kaufmann Publishers Inc., 1994.

[10] Ventura, Dan and Tony Martinez, “Robust Optimization
Using Training Set Evolution”, Proceedings of the
International Conference on Neural Networks, pp.
524-8, 1996.

[11] Ventura, Dan and Tony Martinez, “A General
Evolutionary/Neural Hybrid Approach to Learning
Optimization Problems”, Proceedings of the World
Congress on Neural Networks, pp. 1091-5, 1996.

[12] Ventura, Dan and Tony Martinez, “Using Evolutionary
Computation to Generate Training Set Data for Neural
Networks”, Proceedings of the International
Conference on Artifical Neural Networks and Genetic
Algorithms, pp. 468-71, 1995.

[13] Wieland, Alexis P., “Evolving Controls for Unstable
Systems”, Proceedings of the 1990 Connectionist
Models Summer School, pp. 91-102, 1990.

Appendix A: dynamics of the pole
balancing problem

The nonlinear differential equations describing the pole
balancing system used in the simulations are taken from
[1] and are as follows.

˙̇x =
F + ml θ̇ 2 sin θ − ˙̇θ cosθ[] − µcsgn ẋ()

mc + m

˙̇θ =
g sin θ + cosθ −F − mlθ̇ 2 sin θ + µcsgn ẋ()

mc + m









 −

µ pθ̇
ml

l
4
3

− m cos2 θ
mc + m











Here x is the horizontal position of the cart, θ is the angle
of the pole off of vertical, F is the force applied to the
cart, m c and m are the masses of the cart and pole

respectively, l is the half length of the pole, µc and µp are
the friction coefficients for the cart and pole respectively,
and g is the gravitational constant. Table 1 gives the
values used for the variables during the simulations.

Table 1. Values for the pole balancing
simulation

 Variable Meaning Value

x horizontal cart position ±10 m
θ angle of pole off vertical ±1.57 rad
F force applied to cart ±50 N
mc mass of cart 1 kg
m mass of pole .1 kg
l half length of pole .5 m
g gravitational constant -9.8 m/s2

µc friction of cart on track .0005
µp friction of pole on cart .000002

Appendix B: further experimental results

All results shown are for 10 seconds. Figure 8 shows
results of using only the angle and its velocity (and not
the angular acceleration) as inputs to the controller.
Figure 9 shows the result of changing the gravitational
constant to .5g, and Figure 10 shows the result for a pole
with 4 times more massive than the pole used during
training (.4 kg for testing but .1 kg for training).

Time

A
ng

le

-0.2

0

0.2

0.4

0.6

0.8

Figure 8. θ -trajectory using only 2
inputs with initial pole angle of θ = .78
radians ≈ 45°

Time

A
ng

le

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 9. θ -trajectory for .5g with
initial pole angle of θ = .4 radians ≈ 23°

Time

A
ng

le

0

0.1

0.2

0.3

0.4

Figure 10. θ -trajectory for .4 kg pole
with initial pole angle of θ = .4 radians
≈ 23°

