
Proceedings of the International Workshop on Neural Networks and Neurocontrol, 1997

Neural Network and Machine Learning Laboratory
http://axon.cs.byu.edu
Department of Computer Science
Brigham Young University
Provo, UT 84602 USA
email: dan@axon.cs.byu.edu

 martinez@cs.byu.edu

Using Evolutionary Computation to Facilitate Development of
Neurocontrol

Dan Ventura and Tony Martinez

The field of neurocontrol, in which neural networks are used for control of complex
systems, has many potential applications. One of the biggest hurdles to developing
neurocontrollers is the difficulty in establishing good training data for the neural network.
We propose a hybrid approach to the development of neurocontrollers that employs both
evolutionary computation (EC) and neural networks (NN). The survivors of this
evolutionary process are used to construct a training set for the NN. The NN learns the
training set, is able to generalize to new system states, and is then used for neurocontrol.
Thus the EC/NN approach combines the broad, parallel search of EC with the rapid
execution and generalization of NN to produce a viable solution to the control problem.
This paper presents the EC/NN hybrid and demonstrates its utility in developing a
neurocontroller for the pole balancing problem.

1. Introduction

Although neural networks (NN) possess great
potential for the control of complex systems, the
field of neurocontrol faces difficult problems as
well. One of the most difficult involves proper
training of NN for control of complex systems,
which is a complicated endeavor when the system
to be controlled is open-loop unstable. This paper
proposes a method of using evolutionary
computation (EC) to develop a training set for
training an NN to control such a system. The
broad, parallel search capabilities of the EC are
employed to find regions of the system state space
that are stable, and the survivors of the evolution
constitute the training set used to train the NN for
use as a neurocontroller.

Combination of NN and EC technology is
becoming more prevalent and usually focuses on
using EC to develop the architecture (the weights,
the topology, or both) of the NN. For example see
[Cau91], [Har90], [Sau94], and [Wie90]. On the
other hand, the work presented here presupposes
some NN architecture and focuses on using EC to
develop a training set suitable for training the NN.
It extends previous work done by the authors in

which the combination of EC and NN was used for
optimization. Though much less common, some
work similar in flavor to this approach does exist
including [Mia96], [Mon89], and [Rom93].

Section 2 describes the problem of training an
NN for system control and section 3 then describes
the hybrid EC/NN approach that is the main
contribution of this paper. Section four discusses
applying this approach to the well-known pole
balancing problem, the prototypical example for
system control. Finally, section 5 provides
conclusions and directions for future work.

2. Problem Description

Given a plant, Θ , the state of Θ may be
described at time t by a vector of status variables,
st. Control of the plant is effected by Γ which
applies a control vector, c, to Θ. That is, given a
plant state at time t described by vector st, the
setting of the values of the vector c will result in a
different plant state at time t+δ described by the
vector st+δ . The problem is how should Γ be
constructed so that given a status vector, st, Γ
outputs a control vector c such that st+δ describes a
better plant state, if possible, than st? We assume
the existence of some evaluation function, f, that
will determine whether or not one plant state is
better than another. The operation of Θ may be
either continuous or discrete and Γ has no
information about the internal dynamics of Θ .

2

The only information about Θ available to Γ is
the value of st. Given st, Γ is expected to output
values for c, the goal being to maximize f for any
given instance (state) of Θ . In earlier papers
[Ven95] [Ven96a] [Ven96b], single iteration, open-
loop optimization type problems have been
considered.

Plant Θ

Control Γ

maximize f(Status)

Initial Status of Θ

Status

st+δc
st

st

Figure 1. Control system with feedback

Here, we address the problem of continuous,
closed loop control using feedback (see Figure 1).
We assume that the plant Θ to be controlled is
open-loop unstable, and the goal is to develop a
neurocontroller for the Γ component of the system
that will optimize (in some sense) the operation of
the plant Θ. Since it is assumed that the internal
dynamics of the plant are unknown (if they are
known, a good controller may be developed using
conventional control theory), using a neural
network that learns to control the plant using only
the externally available information (plant state st)
is a promising option. However, we are still faced
with a difficult problem. Namely, neural networks
usually learn inductively by repeated exposure to
preclassified examples. What examples should be
used for training the neurocontroller? The
following section details the use of evolutionary
computation and “black box” access to the plant
(that is, only the plant state st is available) to
develop a training set for the neurocontroller.

3. Using Evolutionary Computation to
Produce a Training Set

Assuming that the status and control variables
are defined over even a modest range, it is obvious
that the input (status) and output (control) spaces
will be extremely large. Evolutionary computation
lends itself well to the exploration of large spaces.
However, such evolutionary exploration is often
slow. If we assume that the mapping s → c is
nonrandom and in some sense generelizeable, then
a (hopefully) representative set of points may be

discovered via EC, and those points then used to
train a NN which may then generalize over the rest
of the function. The goal of the EC/NN synergism
is to obtain the accuracy of evolutionary search and
the speed of neural execution.

From the space defined by s that describes Θ
we choose a (hopefully) representative set of plant
states by choosing n initial status vectors. We

denote these i
t=0s , 0<i≤n and refer to the plant

described by state i
t=0s as i

t=0Θ , 0<i≤n. These

choices could be random or could be biased by any
a priori heuristics as to what constitutes a realistic
or desirable (stable vs. unstable for instance) plant
state (for example, see section 4). The goal is to
know, given one of these i

t=0s , what a “good” c

vector would be. For each of the i
t=0s , EC is used

to discover such a c in the following way.
Assume a fitness function f that takes as input

a status vector s and returns a real-valued fitness

measure. Now for each i
t=0s , randomly initialize a

population of m control vectors, denoted ck,
0<k≤m . Evaluate the initial population by

simulating the workings of i
t=0Θ for δ time steps

(where δ time steps are sufficient for Θ i to
stabilize) for each ck, and then applying fitness

function f to i
t=δs . Next, until some stopping

criterion is reached (a maximum number of
generations, for example), choose parents and use
genetic operators (crossover, mutation, etc.) to
produce m offspring, evaluate the children and
select m survivors from amongst the parents and
children. The algorithm is sketched in figure 2.
Finally, for each of the n populations, choose the
individual, cmaxi

, (the individual with the highest
fitness) and build a set of n training examples of

the form i
t=0s → c m a x i

. This approach is

summarized in figure 2.

3

evolve()
generate si

for each

initialize population ck, 0<k≤m.
evaluate(ck,Θi)
until(done)

select parents from ck
apply genetic operators to parents
evaluate(children,Θi)
ck

 ← choose m survivors

evaluate(c,Θi)

run for δ time steps with control c

return f()

i
t=0s

i
t=0Θ

i
t=δs

Figure 2. Algorithm for evolving training set

The EC has now found “good”
approximate solutions for n points from the input
(status) space but can say nothing about any other
points, many of which we are likely to encounter
during normal execution of Θ. Obviously, one
solution to the problem defined in section 2 would
be to employ the evolutionary scheme discussed
above as the control Γ . However, this would
likely be unacceptable in terms of execution speed.
Therefore, the NN is employed to generalize over
the entire space defined by s using the relatively
small set of approximate solutions as a training
set. While the initial training of the network
maybe somewhat time consuming, depending on
the network and training algorithm employed, the
generalization during execution will be extremely
fast. The synergistic combination of EC and NN
is then employed as the control Γ as in figure 3.

Γ

{si}

EC

NN

si → ck

learning

s

c

Training
Set

execution

Random
choice

Figure 3. The control Γ

It should be noted that since many (if not most)
interesting control problems involve plants that are
open-loop unstable, care must be taken in the
choice of the parameter δ. On the one hand, if δ is
too short, the effect of applying the control to the
system will not be readily apparent. On the other
hand, if δ is too long, the instability of the plant
will have destroyed any useful measure of how
good the control vector was.

The power of this EC/NN hybrid approach is
its combination of the thoroughness of
evolutionary search with the speed and accuracy of
neural generalization. Further, it is generally
applicable to any control problem for which a
fitness function can be found and for which
“blackbox” access to the system to be learned (or a
reasonable simulation thereof) is possible. In order
to provide proof-of-concept, the next section
discusses using the EC/NN approach to solve one
such control problem.

4. The Pole Balancing Problem -- An Example

The pole balancing problem is a well known,
textbook example of a complex control system.
The problem exists in many variations, but
perhaps the most common consists of a pole
attached by a hinge to a wheeled cart that sits in a
short track. The challenge is to apply force to the
cart in order to keep the pole upright and at the
same time not run the cart into the side of the track
(since that would of course cause the pole to fall).
Figure 4 gives a simple diagrammatic
representation.

Figure 4. The pole balancing problem

The system is inherently unstable and the solution
is, of course, a gentle oscillatory application of
force in first one direction and then the other.
Other variations on this theme include infinite
length tracks, multi-jointed poles, and multiple
poles on the cart, but the simple system shown in
figure 4 will suffice for our purposes.

This system was simulated using a discrete
time, state-space representation (see Appendix)

4

with a fixed 1 millisecond time increment. A
training set of 50 instances of the form

x, ẋ,θ , θ̇() → F was generated using the

evolutionary method described in section 3. The
length of time allowed for system stabilization
during the evolutionary evaluation, δ, was set to
10 time steps (10 milliseconds). As noted earlier,
during training set generation, any knowledge of
which plant states are more likely or more useful
(stable) should be incorporated into the
evolutionary process in order to concentrate on
exploring those part of the state-space that will be
most helpful for neural network generalization. In
this case of the pole balancer, we are most
interested in the those states in which the pole
angle and its derivative are small (since once either
is too large the pole will fall for sure due to the
system limitations on track width and available
force). Likewise, only states with small values for
horizontal position and cart velocity will be helpful
in training the neural network. Once the training
set had been generated, a simple backpropagation
network with 5 hidden nodes was trained for 1000
epochs using the training set. The learning rate
was set at .5, and a momentum term with a
coefficient of .95 was also employed.

Time

Fo
rc

e

Figure 5. Force applied by neurocontroller to cart over
time

After training for 1000 epochs, the backprop
was tested for 30 seconds (30000 time steps) as a
neurocontroller for the pole balancer. If the pole
fell or the cart hit the wall within 30 seconds, the
neurocontroller failed (either the training set was
bad or the backprop got stuck in a local minima)
and was retrained using the same training set. If
the backprop failed to converge after several trials
the training set could be regenerated and the entire
process started over. However, very rarely did the
backprop fail to find a simple oscillatory solution
within a few training attempts. An example of one
such solution is shown in figure 5, which graphs
force applied to the cart by the neurocontroller

verses time. The graph represents a time of 30
seconds.

5. Conclusions

A new evolutionary/neural hybrid approach for
the development of neurocontrol has been
demonstrated. In particular, it has been shown how
evolutionary computation and “black box” access
to the plant can be used to generate a suitable
training set for training a neural network to act as a
controller of an inherently unstable system.
Because many interesting control problems exist
for which the dynamics of the plant are unknown,
neural networks offer a viable approach to
approximating desired control of a plant. However,
because many plants are open-loop unstable,
training the neural network for control is difficult.
The use of evolutionary computation, along with a
judicious choice of the stabilization parameter δ
facilitates the development of neurocontrol for
unstable systems. Currently, we are applying the
methods described here to the real world problem of
controlling the combination of engine and airframe
for a high performance military aircraft. Future
work includes quantifying the choice of δ, better
avoidance of local minima during NN training, and
combining these techniques with those that evolve
the network architecture.

Appendix: Dynamics of the Pole Balancing
Problem

The differential equations describing the pole
balancing system given here are taken from
[Wie90] and are as follows.

˙̇x =
F − µcsgn ẋ() + F̃

M + m 1 − 3
4

cos2 θ





(1)

˙̇θ = − 3
4l

˙̇x cosθ + g sin θ +
µ pθ̇
ml









 (2)

In equation (1),

F̃ = mlθ̇ 2 sin θ + 3
4

m cosθ
µ pθ̇
ml

+ g sin θ






. (3)

Here x is the horizontal position of the cart, θ is
the angle of the pole off of vertical, F is the force

5

applied to the cart, M and m are the masses of the
cart and pole respectively, l is the half length of the
pole, µc and µp are the friction coefficients for the
cart and pole respectively, and g is the gravitational
constant. Assuming no friction and relatively
small angles and velocities, a simple version of the
pole and cart system can be approximated by the
following two differential equations.

(M + m) ˙̇x + ml ˙̇θ = F (4)

ml˙̇x + 4
3

ml2 ˙̇θ + mglθ = 0 (5)

(Recall that the assumption of small velocities

allows us to ignore the ẋ and θ̇ terms and the
assumption of small angles allows the
approximations cosθ ≈ 1 and sin θ ≈ θ .) Table I
gives the values used for the variables during the
simulation.

Table I. Values for the pole balancing simulation

Variable Meaning Value

x horizontal cart position [-2, 2] m
q angle of pole off vertical [-.15, .15] rad
F force applied to cart [-10, 10] N
M mass of cart 1 kg
m mass of pole .1 kg
l half length of pole .5 m
g gravitational constant -9.8 m/s2

Equations (4) and (5) above can be converted into a
state-space representation so that the system is in
the linear form:

ṙ
y = A

r
y + B

r
u , (6)

r
z = C

r
y . (7)

with the state vector

r
y = x, ẋ,θ , θ̇[]T

, the control

vector
r
u = F , and the output vector

r
z = x,θ[]T .

Finally, equations (6) and (7) can be discretized for
simulation using an appropriately small time
increment:

r
y t + 1() = A

r
y t() + B

r
u t() , (8)

r
z t() = C

r
y t() + D

r
u t() . (9)

The matrices shown below were generated using
Matlab and are discretized with a time step size of 1
millisecond.

A =

1.0000 0.0010 0.0000 0.0000

0.0000 1.0000 −0.0007 0.0000

0.0000 0.0000 1.0000 0.0010

0.0000 0.0000 0.0159 1.0000



















B =

0.0005

0.9670

−0.0007

−1.4790



















C =
0.0010 0.0000 0.0000 0.0000

0.0000 0.0000 0.0010 0.0000






D =
0.0005

−0.0007






References

[Bar83] Barto, Andrew G., Sutton, Richard S.
and Anderson, Charles W., “Neuronlike Adaptive
Elements That Can Solve Difficult Learning
Control Problems”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. smc-13,
no. 5, September/October, 1983.

[Cau91] Caudill, Maureen, “Evolutionary Neural
Networks”, AI Expert, vol. 6, no. 3, pp. 28-33,
March 1991.

[Gol89] Goldberg, D. E., Genetic Algorithms
in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing, 1989.

[Har90] Harp, S. A., Samad, T. and Guha, A.,
“Designing Application-Specific Neural Networks
Using the Genetic Algorithm”, N I P S - 8 9
Proceedings, 1990.

[Mia96] Miagkikh, V. V., Topchy, A. P. and
Lebedko, O. A., “Fast Learning in Multilayered
Networks by means of Hybrid Evolutionary and
Gradient Algorithms”, Proceedings of the
International Conference on Evolutionary
Computation and it Applications, pp. 390-8, June
1996.

6

[Mon89] Montana, D. J. and Davis, L.,
“Training Feedforward Neural Networks Using
Genetic Algorithms”, Proceedings of the Third
International Conference on Genetic
Algorithms, 1989.

[Rum86] Rumelhart, David E., McClelland,
James L, and the PDP Research Group, Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, MIT Press, 1986.

[Rom93] Romaniuk, Steve G., “Evolutionary
Growth Perceptrons”, Genetic Algorithms: 5th
International Conference (ICGA-93), S. Forrest
(ed.), Morgan Kaufmann, 1993.

[Sau94] Saunders, Gregory M., Angeline, Peter
J. and Pollack, Jordan B., “Structural and
Behavioral Evolution of Recurrent Neural
Networks”, Advances in Neural Information
Processing Systems, vol. 6, pp. 88-95, Morgan
Kaufmann Publishers Inc., 1994.

[Ven95] Ventura, Dan, Andersen, Tim and
Martinez, Tony R., “Using Evolutionary
Computation to Generate Training Set Data for
Neural Networks”, Proceedings of the
International Conference on Neural Networks
and Genetic Algorithms, pp. 468-471, 1995.

[Ven96a] Ventura, Dan and Martinez, Tony R.,
“Robust Optimization Using Training Set
Evolution”, Proceedings of the International
Conference on Neural Networks, pp. 524-8,
1996.

[Ven96b] Ventura, Dan and Martinez, Tony R.,
“A General Evolutionary/Neural Hybrid Approach
to Learning Optimization Problems”, Proceedings
of the World Congress on Neural Networks, pp.
1091-5, 1996.

[Wie90] Wieland, Alexis P., “Evolving Controls
for Unstable Systems”, Proceedings of the 1990
Connectionist Models Summer School, pp. 91-
102, 1990.

