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 Using Multiple Statistical Prototypes to Classify Continuously Valued Data
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Multiple Statistical Prototypes (MSP) is a modification of a standard minimum distance classification scheme
that generates multiple prototypes per class using a modified greedy heuristic.  Empirical comparison of MSP with
other well-known learning algorithms shows MSP to be a robust algorithm that uses a very simple premise to
produce good generalization and achieve parsimonious hypothesis representation.

1. Introduction
The idea of using prototypes to represent classes has proven to be a powerful mechanism for

learning [1][2][14][12][9].  It is a simple and natural approach to the problem of dealing with
continuously valued attributes.  The basic assumption is that given an m-dimensional space
defined by the input variables, there exists one or more representative points in that space for
each output class.  These representative points are termed prototypes.  The multiple statistical
prototypes algorithm (MSP) is a simple variation on this idea.  It assumes that all input variables
are continuously valued and that each output class can be represented by one or more gaussian
functions over these input variables.  This assumption is not unreasonable because all functions
may be approximated by one or more gaussian bases, the worst case being the degenerate one.

The idea of using statistical information obtained from a training set in the formation of
prototypes has also been used in other models.  Two examples of similar systems are radial basis
function networks [8] and CLASSIT [6].  MSP differs from CLASSIT in its supervised approach
to learning, its utility measure (distance metric), and in the fact that MSP does not use a merge-
type operation.  MSP and RBF both use prototypes to perform a non-linear mapping from the
input space to the output space.  However, they differ in their manner of calculating prototypes
and in their mapping function.

Section two presents the basic statistical prototypes (SP) which employ a single prototype per
class.  Section three extends this to multiple prototypes per class (MSP).  Both sections include
empirical results and comparisons with other algorithms.  Section four provides further empirical
results and analysis and section five concludes the paper.

2. Creating Statistical Prototypes
Initially, each output class is assumed to be represented by a single m-dimensional gaussian

base over the input space.  Therefore, by assumption, each output class is represented with a
single prototype.  Define:

T as a set of training instances;
n as the number of instances in T, that is n = T;
c as the number of output classes represented in T;
v as the number of input variables represented in T;
i as an index that ranges 0≤i<c and indicates output class;
j as an index that ranges 0≤j<v and indicates input variable;
Ti as the ith sub-training set obtained by partitioning T by output class;
oi as the ith output class of T;
mij as the mean of the jth input variable for Ti;
σij, as the standard deviation of the jth input variable for Ti;
pi as the prototype for class i;
x as a vector of inputs representing an instance;
xj as the jth input of an instance;
di  as the normal distance between a point x and pi.



The basic algorithm (algorithm SP in figure 1) is outlined below and proceeds as follows.  First,
divide the training set T by output class, creating c sub-training sets Ti.  For each Ti and each
input variable j calculate mij and σij.  pi is the vector of ordered pairs (mij, σij).  Classification of
a new instance x is accomplished by calculating all di (the distance from each prototype) for the
point defined by that instance and outputting z such that dz = min{di}, where di is calculated as

id = jx − ijm

ijσj=0

v
∑ .

Learn()
Create subtraining sets Ti
Calculate mij and σij
Create pi as j ordered pairs, (mij, σij)

Classify(x)
calculate all di
output z such that dz = min{di}

Figure 1. Single prototype per output class (algorithm SP)

Two points are worth a brief mention here.  First, this is obviously a variation of a standard
minimum distance classifier.  Thus, SP is not a novel idea;  however, it is important as
background material because it is the basis for MSP, which extends the minimum distance
classifier to multiple prototypes per class in a novel way.  Second, the name statistical prototypes
may be somewhat misleading.  SP is not a statistical approach to clustering/classification in the
Bayesian sense of relying on the statistical properties of the underlying distributions.  It is
statistical only in the sense of employing the simple statistical variables of mean and standard
deviation in representing prototypes.

2.1. An Example.  Suppose that T consists of the following set of nine instances:

4.8 1.8 -> negative, 3.5 1.2 -> positive,
5.0 1.9 -> negative, 3.0 1.1 -> positive,
4.5 1.7 -> negative, 3.9 1.4 -> positive,
3.5 1.2 -> negative, 4.2 1.5 -> positive.
3.6 1.2 -> negative,

Then c = 2, v = 2, o0 is negative, and o1 is positive.  T0  consists of the first five instances,  and
T1 of the last four instances.  Calculating the means and standard deviations we get

m00 = 4.28, m01 = 1.56, m10 = 3.65, m11 = 1.30,
σ00 = .618, σ01 = .301, σ10 = .450, σ11 = .158.

The notation used throughout for expressing a prototype is

pi = mi0 mi1 ... miv-1
σi0 σi1 ... σiv-1 -> oi.

 Therefore,

p0 = 4.280 1.560
0.618 0.301 -> negative,

p1 = 3.650 1.300
0.450 0.158 -> positive.



Now, suppose an instance x = (5.0, 1.1) is presented to the system for classification.
Distances from x to each prototype are calculated:

d0 = 
5 - 4.28

.618
+ 1.1−1.56

.301
 = 2.69,

d1 = 
5 - 3.65

.618
+ 1.1−1.3

.158
 = 4.27.

The prototype for o0 (negative) is the closest to the example so x is classified as negative.
2.2. Empirical Results.  SP was compared empirically with the following nine well-known

learning models: ID3 [11], C4.5 (tree and rule versions) [10], Cart [3], Bayes [3], MML [13], IB3
[1], IB4 [2], and CN2 [4].  The results are shown in Table 1.  These results represent averages
over 25 runs.  The first column shows the percentage of test instances classified correctly using
SP.  As before, 70% of the data were used as training instances, and the remaining 30% as test
instances.  The remaining three columns give the best, average and worst performance of the
nine algorithms mentioned above and were obtained from [18].

Dataset SP Best Average Worst
Wine 94.6 93.8 92.6 90.5
Vowel 46.8 92.6 81.8 73.3
Sonar 73.3 78.9 75.7 72.5
Iris 95.0 95.3 94.7 94.0
Bupa 59.9 67.0 62.8 56.5
Pima 69.1 74.1 71.1 68.3
Vehicle 47.5 77.6 70.1 59.2
Thyroid 94.5 93.5 92.1 89.2
Glass 49.3 68.6 66.4 61.6
Waveform 79.5 72.0 68.7 66.0
Wavenoise 81.6 73.0 68.8 65.0

Table 1.  Using single statistical prototypes to classify the data sets

Notice that SP does very well in comparison with other learning models on the iris, thyroid,
waveform, wavenoise, and wine data sets.  Since a single prototype represents each class this
indicates that these are fairly simple data sets to learn and represent essentially linearly separable
problems.  SP performs fairly well on the bupa, pima, and sonar data sets.  This indicates that
these problems, too, are fairly easy although not quite linearly separable, since other, more
advanced, methods perform significantly better on them.  Creating multiple prototypes per class
could improve performance.  Finally, SP does quite poorly on the glass, segment, vehicle, and
vowel data sets.  It appears that these data sets are far from linearly separable, and thus a single
prototype per class representation would be expected to perform poorly.  Multiple prototypes per
class are a necessity in these cases.

3. Extension to Multiple Prototypes Per Class (MSP)
Extending single-prototype minimum distance classifiers to multiple prototypes is a difficult

problem because there exists no optimal method for determining which prototypes to use.
Various approaches to the problem include neural networks such as competitive learning [14],
counter propagation networks [9], and RCE [12] as well as instance based learning [1][2], nearest
neighbor methods [5], and clustering techniques such as ISODATA[16].  MSP employs an error
feedback heuristic to extend the simple statistical prototype described in the previous section.
Add the new definitions:



εb as the error in classifying the training set before creating a new prototype;
εa as the error in classifying the training set after temporarily splitting a prototype;
εsmall as the smallest error in classifying the training set after temporarily splitting each

prototype;
qi as the number of prototypes for output class i;
k as an index that ranges 0≤k<qi and indicates prototype number;
ismall, jsmall, ksmall as the values of i, j, and k during temporary splitting of prototypes that

result in the value εsmall;
qsmall as qismall, a slight abuse of notation;

i
kT  as the sub-training set that contains all the instances of output class i that are closest to the

kth prototype for class i;

i
kt  as an instance in i

kT ;
min{j, i

kT } as the minimum value of input j for any i
kt  in i

kT ;
max{j, i

kT } as the maximum value of input j for any i
kt  in i

kT .
Also, replace the definitions for pi and di by the following:

i
kp  as the kth prototype for class i;

i
kd  as the normal distance between a point and i

kp .
A method for determining how many prototypes are required for an output class is required.
MSP applies a two level greedy algorithm as follows (figure 2).

First, run SP to generate a single prototype, i
0p , for each output class.  Next, calculate εb by

using the prototypes to attempt to classify the training set T.  Then temporarily split 0
0p  on input

0 as follows.  Find min{0, 0
0T } and max{0, 0

0T } and temporarily divide 0
0T  into 0

0minT  and 0
0maxT

where 0
0minT  contains all 0

0t  closer to min{0, 0
0T } than to max{0, 0

0T }, and 0
0maxT  contains all 0

0t
closer to max{0, 0

0T } than to min{0, 0
0T }.  Calculate temporary prototypes 0

0minp  and 0
0maxp  as

before and then calculate εa by again attempting to classify T, the only change being that 0
0p  has

been temporarily replaced by 0
0minp  and 0

0maxp .  Reunite 0
0minp  and 0

0maxp  into 0
0p  and repeat

for all inputs xj and all prototypes i
kp , in order to find the values ismall, jsmall, ksmall, and εsmall.

Now, if εsmall < εb, permanently split ismall

ksmallp  into ismall

ksmallp  and ismall

qsmallp , increment qsmall, and set εb =
εsmall.  If  εsmall  ≥εb, temporarily split ismall

ksmallp  into ismall

ksmallp  and ismall

qsmallp , temporarily increment
qsmall, temporarily set εb = εsmall,  and repeat the entire process.   If again εsmall  ≥εb, unsplit

ismall

ksmallp , decrement  qsmall, and quit.  Otherwise, make the temporary split permanent, permanently
split the new ismall

ksmallp  into ismall

ksmallp  and ismall

qsmallp , increment qsmall, set εb = εsmall, and repeat until εsmall
≥εb for two consecutive passes through the training set.  Classification of new instances is
performed the same as in SP.



Learn()
Run SP
Calculate εb
While(notεsmall  ≥εb for two consecutive passes)

For i = 0 to c-1
For k = 0 to qi-1

For j = 0 to v-1
Split( ,j)
Calculate εa
If εa < εsmall

εsmall = εa, ismall = i, jsmall = j, ksmall = k
Unsplit( ,j)

If εsmall < εb
Split( ,jsmall)
qsmall = qsmall+1
εb = εsmall
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Figure 2. Multiple prototypes per output class (algorithm MSP)

3.1. An Example.  Continuing with the previous example, recall that the initial calculation of
prototypes yielded

0
0p  = 4.280 1.560

0.618 0.301 -> negative,

1
0p  = 3.650 1.300

0.450 0.158 -> positive.

The distances from each prototype for each instance of the training set are presented in the
following table:



               d0                          d1         
(4.8, 1.8) 1.639 5.720
(5.0, 1.9) 2.295 6.797
(4.5, 1.7) 0.821 4.421
(3.5, 1.2) 2.459 0.966
(3.6, 1.2) 2.296 0.744
(3.5, 1.2) 2.459 0.966
(3.0, 1.1) 3.599 2.710
(3.9, 1.4) 1.146 1.411
(4.2, 1.5) 0.329 2.488

Now, T is classified using these prototypes and the results are shown below with the correct
classification in parentheses.

4.8 1.8 -> negative, 3.5 1.2 -> positive ,
5.0 1.9 -> negative, 3.0 1.1 -> positive ,
4.5 1.7 -> negative, 3.9 1.4 -> negative*,
3.5 1.2 -> positive *, 4.2 1.5 -> negative*.
3.6 1.2 -> positive *,

* misclassified

Thus, with a single prototype per class, εb = 4/9 = .444.  Now, 0
0p  is temporarily split on input 0

into 0
0minp  and 0

0maxp .  Min{x0 of 0
0t } = 3.5 and max{x0 of 0

0t } = 5.0.  Therefore, dividing 0
0T

results in 0
0minT  containing

4.8 1.8 -> negative,
5.0 1.9 -> negative,
4.5 1.7 -> negative,

and 0
0maxT  containing

3.5 1.2 -> negative,
3.6 1.2 -> negative.

Temporarily recalculating prototypes gives

0
0minp = 4.767 1.800

0.205 0.082 -> negative,

0
0maxp = 3.550 1.200

0.055 0.001 -> negative,

1
0p  = 3.650 1.300

0.450 0.158 -> positive.

The new table of distances now includes distances from all three prototypes for each instance:



               d0min                     d0max                    d1         
(4.8, 1.8) 0.161 622.73 5.720
(5.0, 1.9) 2.356 726.36 6.797
(4.5, 1.7) 2.522 517.27 4.421
(3.5, 1.2) 13.496 0.909 0.966
(3.6, 1.2) 13.001 0.909 0.744
(3.5, 1.2) 13.496 0.909 0.966
(3.0, 1.1) 17.156 110.00 2.710
(3.9, 1.4) 9.107 206.36 1.411
(4.2, 1.5) 6.424 311.82 2.488

Now, T is again classified, this time with the modified prototypes:

4.8 1.8 -> negative, 3.5 1.2 -> negative *
5.0 1.9 -> negative, 3.0 1.1 -> positive,
4.5 1.7 -> negative, 3.9 1.4 -> positive,
3.5 1.2 -> negative, 4.2 1.5 -> positive.
3.6 1.2 -> positive*,

* misclassified

Now εa = 2/9 = .222.  Since this is the first temporary split, εsmall is set equal to .222.  0
0minp

and 0
0maxp  are now reunited into 0

0p , and whole process is repeated for 0
0p  on input 1, 1

0p  on
input 0 and 1

0p  on input 1.  Since εsmall is already less than εb, at least one permanent split will
occur.  If none of the other temporary splits classify better than 77.8% (7/9) correctly, 0

0p  will be
split on input 0.

3.2. Empirical Results.  The data sets were reclassified using MSP in order to generate
multiple prototypes per class.  These results are shown in Table 2, which is an expansion of
Table 1 that includes the new results.

Dataset SP  MSP Best Average Worst
Wine 94.6 96.8 93.8 92.6 90.5
Vowel 46.8 81.1 92.6 81.8 73.3
Sonar 73.3 81.4 78.9 75.7 72.5
Iris 95.0 94.5 95.3 94.7 94.0
Bupa 59.9 62.1 67.0 62.8 56.5
Pima 69.1 70.3 74.1 71.1 68.3
Vehicle 47.5 68.1 77.6 70.1 59.2
Thyroid 94.5 95.8 93.5 92.1 89.2
Glass 49.3 63.4 68.6 66.4 61.6
Waveform 79.5 77.7 72.0 68.7 66.0
Wavenoise 81.6 77.1 73.0 68.8 65.0

Table 2.  Using multiple statistical prototypes to classify the data sets

As is to be expected, little improvement in performance was achieved for the data sets on
which single prototypes already performed well.  However, dramatic performance increases are
evident on the data sets on which single prototypes performed poorly (i.e. glass, vowel, and
vehicle).

4. Analysis



MSP outperforms all models on five of the data sets (sonar, thyroid, waveform, wavenoise,
and wine) and performs near or above average on the others.  Table 3 compares MSP with the
other nine learning models by average performance over all eleven data sets.  The models are
ordered left to right in descending order of performance.

MSP       MML      Bayes       ID3         IB4        Ctree       IB3         Cart       Crules      CN2
78.9 78.0 77.8 77.7 77.6 76.8 76.7 75.5 74.2 71.3

Table 3.  Average performance over all data sets

  Table 4 shows the average number of prototypes created by MSP for each data set.  The first
column indicates the number of output classes for the appropriate data set.  This may be thought
of as a lower bound on the number of prototypes required by MSP.  The second column indicates
the average number of prototypes actually created by MSP.  The third column indicates the
number of instances in the training set (an upper bound on the number of prototypes), and the
fourth column is the ratio #Prototypes/#Instances.  This ratio gives an indication of parsimony,
indicating to what degree the training information was able to be assimilated into a concise
representation.  As may be seen from the table, a high degree of parsimony is achieved in all
cases.  For all data sets, MSP created no more than an average of seven prototypes per output
class, which always resulted in at least an 87% reduction in information stored.

Dataset #Classes  #Prototypes #Instances %Ratio
Wine  3  5.8  125  4.6%
Vowel 11 48.1  370 13.0%
Sonar  2 14.7  146 10.1%
Iris  3  5.7  105  5.4%
Bupa  2 12.6  242  5.2%
Pima  2 10.7  538  2.0%
Vehicle  4 26.4  593  4.4%
Thyroid  3  6.0 1960   .3%
Glass  7 18.7  150 12.5%
Waveform  3 14.5 1400  1.0%
Wavenoise  3 16.2 1400  1.2%

Table 4. Number of prototypes created by MSP

4.1. Complexity Analysis.  Time complexity for SP, which employs a single prototype per
output class is reasonable.  The calculation of all prototypes requires two passes over the data set.
During the first pass, all mij are calculated.  During the second pass, all σij are calculated.  Since
there are n instances in the training set and each instance contains v input variables, the entire
process requires 2nv steps which yields O(nv).

MSP, which allows multiple prototypes per output class, initially requires the same 2nv steps
as does SP since it actually first runs SP.  Then each temporary split requires O(n+nv) steps --
O(n) steps to divide the instances between  i

kminp  and i
kmaxp  and then O(nv) to calculate the

temporary means and standard deviations.  During each pass through the “while” loop all
prototypes are split in all dimensions.  This means O(nv) splits since the number of prototypes is
bounded above by n, the number of instances.  Therefore, a single pass through the while loop
will require O(nv(n+nv)) = O ( n2v+n2v2)) = O ( n2v2).  Finally, since each pass through the
“while” loop yields a new prototype and since the number of prototypes is bounded above by n,
no more than n passes through the loop will be made.  Therefore, the entire algorithm is
O(n(n2v2)) = O(n3v2).



5. Conclusions
MSP, a prototype-based learning algorithm has been introduced.  Empirical results show it to

be robust in its generalization over a variety of problems as well as being parsimonious in its
hypothesis representation.

Future research includes extending MSP to handle nominal data (some related work has been
presented in [1][7][15]), investigating other metrics for prototype creation, and improving a
parallel implementation based upon a c-ary tree presented in [17].  Parallel implementation of
MSP using a c-ary tree with a broadcast and gather scheme is presented in [17].

This work was funded in part by a grant from Novell, Inc.
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