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Many machine learning and neurally inspired algorithms are limited, at least in their pure
form, to working with nominal data.  However, for many real-world problems, some provision
must be made to support processing of continuously valued data.  This paper presents empirical
results obtained by using six different discretization methods as preprocessors to three different
supervised learners on several real-world problems.   No discretization technique clearly
outperforms the others.  Also, discretization as a preprocessing step is in many cases found to be
inferior to direct handling of continuously valued data.  These results suggest that machine
learning algorithms should be designed to directly handle continuously valued data rather than
relying on preprocessing or ad hoc techniques.

1. Introduction
Many machine learning and neurally inspired algorithms are limited, at least in their pure

form, to working with nominal data, where nominal data is defined as data from a small, finite,
unordered domain.  Examples include CN2 [7], ID3 [16], and AQ* [12][13].  However, for
many real-world problems, some provision must be made to support processing of
continuously valued data.  One approach is discretization of continuously valued data as a
preprocessing step.  Discretization is the process of converting continuously valued data into
nominal data by assigning ranges of real values to one nominal value.  Discretizing
continuously valued data produces inherent generalization by grouping data into several
ranges, representing it in a more general way.    Further, discretization has some
psychological plausibility since in many cases humans apparently perform a similar
preprocessing step representing naturally continuous data such as temperature, weather, and
speed as nominal values (i.e. hot, cold, fair, cloudy, fast, slow, etc.).  The main effort of this
paper is to investigate the feasibility of discretizing continuously valued data as a
preprocessing step for supervised learning systems.  To do so, six different discretization
methods are compared as preprocessors to three different supervised learning models.  These
comparisons are made over several real-world data sets and the results provide evidence
that suggests that machine learning algorithms should directly incorporate handling of
continuously valued data rather than relying on a discretization preprocessing step.

Section two briefly describes the discretization methods and supervised learning systems
used.  Section three presents the empirical results of the study and sections four and five
analyze these results and draw conclusions.

2. Description of Discretization Methods and Supervised Learners Used
The discretization methods used are ChiMerge [10], equal-width-intervals[21], equal-

frequency-intervals [21], maxi-min into k-means [8], Valley [19][20], and  Slice [20].  This
is by no means an exhaustive list of possible discretization techniques (see also [6], [9],
[11], and [18]), but it is believed to be a representative sample.

ChiMerge.  ChiMerge is based on the statistical χ2 test.  All examples are sorted and
initially each is placed in its own interval.  Then intervals are merged iteratively in the
following manner.  The χ2 value is computed for each pair of adjacent intervals and the pair of
intervals with the lowest χ2 value is merged.  This process is repeated until all pairs of
adjacent intervals have a χ2 value that exceeds some threshold.  Two adjacent intervals
whose χ2 value exceeds this threshold are considered to be significantly different and thus
should not be merged.



Equal-width-intervals and equal-frequency-intervals.  Equal-width-intervals is a generic
method that simply divides the data into some number of intervals all with equal width.  This
is completely arbitrary and does not seek to discover any information inherent in the data.  Its
main advantage is its simplicity.  Equal-frequency-intervals uses a similar approach but
employs a frequency metric, dividing the data into some number of intervals each of which
contains the same number of data points.  The same comments apply to this method as to the
equal-width method.

Maxi-min into k-means (kmmm).  This is a combination of two classical clustering
algorithms, k-means and maxi-min.  K-means depends on user input for the number of
desired intervals but does not depend on the user to find interval boundaries.  Maxi-min
discovers the “proper” number of intervals but depends on user-defined parameters to find
interval boundaries.  In order to reduce (not eliminate) dependence on user-defined
parameters, maxi-min is used to discover the “proper” number of intervals and then k-
means is used to find the actual interval boundaries.

Valley.  Valley is specific instantiation of a general discretization paradigm called
BRACE.  This method concentrates on finding the natural boundaries between intervals and
creates a set of possible classifications using these boundaries.  All classifications in the set
are evaluated according to a criterion function and the classification that maximizes the
criterion function is selected.  Valley creates a histogram of the data, finds all local minima
(valleys), and ranks them according to size.  The largest is then used to divide the data into a
two-interval classification.  A three-interval classification is then created using the two
largest valleys and so on until a v-interval classification has been created (where v is the
number of local minima in the histogram).  These classifications are then used to predict the
output class of the data, and the classification with the best prediction rate is selected.

Slice.  Slice is a generalization of Valley in which the boundary between every range
(slice) in the histogram is a potential interval boundary.  The best place to divide the data
into two intervals is found by iteratively trying each range boundary and using the resulting
classification to attempt to predict the data’s output class.  This is continued in a greedy
fashion to divide the data into three intervals, and so on until prediction of the output class
fails to improve.

The three supervised learners used are ID3 [16], CN2 [7], and Bounded Order Rule Sets
[3][4].  They were chosen because they all require a discretizing preprocessor and represent
different approaches to supervised learning.  ID3 and CN2 are well established machine
learning approaches, while BORS is a recently proposed technique.

ID3.   ID3 is a decision tree approach to learning.  A decision tree is built using
information gain as the metric for splitting nodes.  This is a greedy approach that attempts to
maximize information gain at each node by splitting on the attribute that currently provides
the most information gain.  The final hypothesis is represented by a decision tree.  C4.5 [15]
is an extension of ID3 that, among its improvements, allows handling of continuously valued
data by basically testing all possible splits over the range of the attribute to be discretized.
This discretization is performed independently at each node in the tree.  Therefore,
discretizing the data before giving it to ID3 is similar to giving the undiscretized data to C4.5.
This is convenient in the sense that we can compare results obtained by discretization and
ID3 directly with results obtained from C4.5 which performs its own internal handling of
continuously valued data (see Table 6 and accompanying discussion).

CN2.  CN2 is a rule induction algorithm that incorporates ideas from both ID3 and from
AQ* [12][13].  Thus CN2 attempts an eclectic combination of the efficiency and ability to
cope with noisy data that ID3 exhibits, with the flexible search strategy and if-then rule
format of AQ*.  The algorithm attempts to build good if-then rules by considering different



combinations of variables and assessing how well each rule properly classifies the training
instances.  The search space is exponential and, therefore various heuristics are used to limit
search time and space.  The hypothesis is represented as an ordered list of if-then rules.

Bounded Order Rule Sets (BORS).  This is an experimental approach that assumes that
most interesting attribute correlations (features) are of a relatively low order.  Thus, even
though examining all higher order correlations is an exponentially expensive proposition in
terms of both time and space, BORS proposes that most interesting correlations or features
may be examined by brute force in bounded time.  Therefore, the algorithm first considers all
first order features and evaluates their ability to correctly classify the training set.  It then
considers all second order features and so on up to some relatively small kth order.  Some
subset of the features are then chosen to represent the hypothesis.

3. Empirical Results
To empirically compare the six discretization methods, each was used as a preprocessor

to each of the three supervised learners for several different real-world data sets.  For
example, the glass data set was discretized with ChiMerge, and then fed to ID3, CN2 and
BORS.  It was then discretized with kmmm and again fed to all three learners, and so on.
Then the whole process was repeated for each of the other data sets.  The data sets used
were all obtained from the UC Irvine Machine Learning Database [14], and each data set
consists entirely of continuously valued inputs and has a single nominal output variable: 

Glass. 9 inputs, 7 output classes.  This is a collection of data from crime lab reports.  The
nine inputs are measures of mineral content (Mg, Al, etc.) and refractive index of different
samples of glass.  The problem is to determine what the glass was used for--windows,
container, head lamp, etc.

Wine. 13 inputs, 3 output classes.  These data are the results of a chemical analysis of
wines grown in the same region in Italy but derived from three different cultivators.  Analysis
determined the quantities of 13 constituents found in each of the three types of wines and
these constitute the 13 input variables.  The problem is to determine which of the three
cultivators produced the wine.

Vowel. 10 inputs, 11 output classes.  Speech signals from 15 different speakers were low
pass filtered at 4.7kHz and then digitized to 12 bits with a 10kHz sampling rate.  Twelfth
order linear predictive analysis was carried out on six 512 sample Hamming windowed
segments from the steady part of the vowel.  The reflection coefficients were used to calculate
10 log area parameters, giving a 10 dimensional input space.  Based on the ten inputs, the
problem is to determine which vowel sound was spoken.

Sonar. 60 inputs, 2 output classes.  Each of the sixty inputs represents a measure of the
energy within a particular frequency band.  Given these inputs, determine whether the sonar
image is a rock or a mine.

Iris. 4 inputs, 3 output classes.  Given sepal length and width and petal length and width,
determine which type of iris the flower is.

Bupa. 6 inputs, 2 output classes. The six inputs represent the outcome of five blood test
results and number of drinks (half-pint equivalents of alcoholic beverages consumed per day)
for a group of male Bupa Indians.  The problem, given the input data, is to determine whether
or not the individual is likely to contract a liver disorder.

Pima. 8 inputs, 2 output classes.  The inputs include age, number of times pregnant, and
the results of various medical tests and are taken from a population of female Pima Indians.
Given these, determine if the individual tests positive for diabetes.

Vehicle.  18 inputs, 4 output classes.  The inputs represent silhouette features extracted
by the HIPS (Hierarchical Image Processing System) extension BINATTS at the Turing
Institute.  Given these inputs the problem is to determine which of four vehicles the



silhouette represents.
Tables 1-3 summarize the results obtained by using each of the discretization methods as

a preprocessor for each of the supervised learners.  Results are averages obtained over ten
runs by using 70% of the data as a training set for learning and the remaining 30% as a test
set.  The results reported in the tables are percent accuracy on the test set.

Glass Wine Vowel Sonar Iris Bupa Pima Vehicle Average

Chi 61 92 61 74 95 62 73 67 73
Freq 53 88 62 65 93 52 67 62 68
Kmmm 64 89 62 68 93 58 73 61 71
Slice 59 93 36 78 95 61 73 62 70
Valley 65 81 47 65 96 60 74 66 69
Width 58 92 64 77 95 51 70 62 71

                                                                                                                                                                                                                                                        

Chi 3 2 4 3 2 1 2 1 2.3
Freq 6 5 2 5 4 5 6 3 4.5
Kmmm 2 4 2 4 4 4 2 6 3.5
Slice 4 1 6 1 2 2 2 3 2.6
Valley 1 6 5 5 1 3 1 2 3.0
Width 5 2 1 2 2 6 5 3 3.3

Table 1. Performance and ranking of discretization methods as a preprocessor to ID3

In each of the tables the data sets are represented in columns and the discretization
methods are represented in rows.  The tables are split into two sections.  The top matrix of
each gives the percent accuracy of the supervised learner on a given data set using a
particular discretization method.  For example, Table 1 shows that ID3 achieved an accuracy
of 61% on the glass data set with ChiMerge used as the preprocessor.  Table 2 shows an

Glass Wine Vowel Sonar Iris Bupa Pima Vehicle Average

Chi 64 75 48 78 95 63 71 45 67
Freq 51 83 57 79 64 57 69 53 64
Kmmm 64 88 57 78 93 56 72 59 71
Slice 59 72 33 80 96 62 74 55 66
Valley 53 75 35 74 92 61 72 43 63
Width 49 85 58 75 92 54 71 57 68

                                                                                                                                                                                                                                                          

Chi 1 4 4 3 2 1 4 5 3.0
Freq 5 3 2 2 6 4 6 4 4.0
Kmmm 1 1 2 3 3 5 2 1 2.3
Slice 3 6 6 1 1 2 1 3 2.9
Valley 4 4 5 6 4 3 2 6 4.0
Width 6 2 1 5 4 6 4 2 3.8

Table 2. Performance and ranking of discretization methods as a preprocessor to CN2

accuracy of 64% for CN2 for the same data and discretization method, and Table 3 shows an
accuracy of 62% for Bounded Order Rule Sets.

The bottom matrix of each table shows the relative rank of each discretization method
for each data set.  For example, Table 1 shows that for ID3’s learning of the vowel data set,



ChiMerge was the 4th best discretization method.  Table 2 shows that for CN2, ChiMerge
was again the 4th best choice, but Table 3 shows that for Bounded Order Rule Sets,
ChiMerge was the best discretization method of the six.

Examining the data in all three tables yields some interesting results.  First, a perusal of
the rankings for each discretization method shows no clearly best method.  Although overall
ChiMerge appears to be a little more robust than the others, the best method of discretization
appears to be data dependent.  Also, the best discretization method depends on the
supervised learner for which the preprocessing is being performed.  To see this, notice that
ChiMerge does quite well for Bounded Order Rule Sets but not nearly so well for CN2.  K-
means combined with maxi-min (kmmm) seems to be the most robust choice for CN2.

Glass Wine Vowel Sonar Iris Bupa Pima Vehicle Average

Chi 62 71 81 90 94 68 72 72 76
Freq 46 69  4 78 93 63 64 65 60
Kmmm 48 68  3 73 89 58 69 60 59
Slice 52 71 23 86 95 49 72 72 65
Valley 57 67 67 85 94 59 68 63 70
Width 39 65  8 78 94 53 70 65 59

                                                                                                                                                                                                                                                          

Chi 1 1 1 1 2 1 1 1 1.1
Freq 5 3 5 4 5 2 6 3 4.1
Kmmm 4 4 6 6 6 4 4 6 5.0
Slice 3 1 3 2 1 6 1 1 2.3
Valley 2 5 2 3 2 3 5 5 3.4
Width 6 6 4 4 2 5 3 3 4.1

Table 3. Performance and ranking of discretization methods as a preprocessor to BORS

Table 4 summarizes the best, worst, and average accuracies obtained on the data sets
by seven well-known learning algorithms that directly handle continuously valued data: C4.5
(both decision tree and rule list forms) [15], Cart [5], Bayes [5], Minimum Message Length
[17], IB3 [1], and IB4 [2].  For details on the methods of obtaining these data see [22].

Dataset Best Average Worst

Glass 68.6 66.0 61.6
Wine 93.8 92.7 90.5
Vowel 92.6 82.1 73.3
Sonar 78.9 75.1 72.6
Iris 95.3 94.8 94.0
Bupa 67.0 62.2 56.5
Pima 73.4 71.0 68.3
Vehicle 77.6 69.5 59.2

Table 4. Best, worst, and average performance for seven well-known learning algorithms that
directly support handling of continuously valued data [22]

A second result of interest is obtained by comparing accuracy results from Tables 1-3 with
the results in Table 4.  Although each supervised learner performs well on some of the data
sets (at least assuming discretization done by the best method), each one also performs
quite poorly on others even using the discretization method with the best results.



Table 5 supports this claim by comparing the three supervised learners’ best results with
the average and best results of the seven algorithms mentioned above.  AvgC is the average
percent correct for all seven algorithms and MaxC is the maximum percent correct for any of
them (these values are taken directly from Table 4).  Bold table entries indicate relatively
poor performance -- ID3 does comparatively poorly on the glass, vowel, and vehicle data
sets; CN2 does comparatively poorly on the glass, wine, vowel, and vehicle data sets; and
Bounded Order Rule Sets performs comparatively poorly on the glass and wine data sets.

Glass Wine Vowel Sonar Iris Bupa Pima Vehicle

ID3 65 93 64 78 96 62 74 67
CN2 64 88 58 80 96 63 74 59
BORS 62 71 81 90 95 68 72 72

AvgC 66 93 82 75 95 62 71 70
MaxC 69 94 93 79 95 67 73 78

Table 5. Discretization preprocessing vs. direct handling of continuously valued data

The claim that discretization as preprocessing is usually detrimental to performance is
further substantiated by comparing the performance results of ID3 (and the best preprocessor
for each data set) with C4.5 (see Table 6.  For a discussion of why C4.5 was used for
comparison, see the discussion of ID3 in section 2).  As may be seen from the table, for all
data sets except sonar, discretization as a preprocessing step did not significantly improve
performance.  Again, for four data sets -- glass, vowel, bupa, and vehicle -- the
discretization was actually detrimental.

Dataset ID3 C4.5

Glass 65 68
Wine 93 93
Vowel 64 80
Sonar 78 75
Iris 96 95
Bupa 62 65
Pima 74 73
Vehicle 67 70

Table 6. ID3 with (best) discretization preprocessing vs. C4.5

It should be noted that the three algorithms examined here -- ID3, CN2, and BORS --
were designed to explore the idea of concept learning.  Concept learning in general does not
address the issue of continuously valued data and often deals exclusively with nominal data.
Therefore, the lower performance results for these algorithms on data sets comprised entirely
of continuously valued attributes is not surprising.  This observation further strengthens the
position that consideration of continuously valued data should not be ignored in design of a
learning algorithm.

These two results together, namely that 1) the best discretization method is dependent
both on the application as well as on the supervised learner and that 2) in general,
discretization as a preprocessing step can lead to severe performance degradation, provide
evidence that discretization as a preprocessing step independent of the supervised learning
system is not the appropriate approach to machine learning.



4. Problems with Discretization as a Preprocessing Step
There are at least two inherent problems in using discretization as a preprocessing step

for a supervised learner.  One of these problems results in the best discretization method
being dependent on the application and supervised learner used.  The other results in the
sometimes poor overall performance observed.

The Independence Problem.  This has to do with the fact that a general method of
discretization has no knowledge of what information the supervised learning method requires
to do its learning.  Therefore, the discretizer may unwittingly eliminate some valuable (to the
particular supervised learner in question) information in the preprocessing step thereby
hampering the supervised system’s ability to learn.  On the other hand, the same
discretization for another supervised learner may have essentially avoided eliminating
important information for that particular case.

The Higher Order Correlation Problem. Obviously, there are often higher order
correlations between input variables.  That is, one input variable by itself may not directly
correlate with the output class, but in combination with one or more of the other input
variables, it may have a very high correlation with the output class.  The idea behind
discretizing the data as a preprocessing step has been to leave the discovery of these higher
order correlations to the supervised learner.  Unfortunately, in considering and discretizing
each of the input variables independently, the discretizer may destroy the higher order
correlation.  For example, consider iris flowers.  Perhaps sepal lengths fall into two general
categories: long (those over 2 inches) and short (those 2 inches or less); however, perhaps if
the sepal width is greater than .2 inches, then a sepal length is not considered long unless it
is over 3 inches.  Since the discretizer is not allowed to discover this higher order correlation,
it will place the input variable sepal length into the “long” interval if it is over 2 inches,
whether that instance’s sepal width is greater than .2 or not.  It will therefore incorrectly
discretize the sepal length variable of any instance whose sepal length is between 2 and 3
inches long and whose sepal width is greater than .2 inches.

5. Conclusions
The empirical results of this paper indicate that in general, the choice of which

discretization method to use depends both on the problem to be learned as well as on the
choice of supervised learning algorithm.  As a result, none of the discretization methods
clearly out-performed the others, although ChiMerge appears to be somewhat more robust
than the other methods.  Also, the process of discretization as a preprocessing step suffered
significantly when compared with algorithms that directly handle continuously valued data.
Each of the supervised learners that employed preprocessing performed poorly on several of
the problems, even assuming a posteriori choice of the best discretization method for the
combination of problem and learner.  These results as well as the two problems discussed in
section 4 provide evidence that discretization as a separate preprocessing step is not the
proper approach to machine learning.  Instead, the handling of both  nominal and continuously
valued data should be addressed in the design of a learning algorithm.
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