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Abstract— The applicability of complex networks of spiking
neurons as a general purpose machine learning technique
remains open. Building on previous work using macroscopic
exploration of the parameter space of an (artificial) neural
microcircuit, we investigate the possibility of using a liquid
state machine to solve two real-world problems: stockpile
surveillance signal alignment and spoken phoneme recognition.

I. INTRODUCTION

From a theoretical perspective, spiking neurons have been
shown to be more computationally efficient than perceptrons
or sigmoid units [1] [2] [3]. Also, some initial work in
attempting to realize this computational power for real-world
learning tasks has been done [4] [5] [6] [7]. However, the
question of exactly how to extract these beneficial properties
remains open. Here, we explore the application of liquid state
machines (LSMs) [8] [9] [10] [11] [12] to spatiotemporal
pattern recognition.

Given a signal z :
a spatiotemporal pattern, «, is a tuple (as, ae, {z(t)}
where

7 — TR", a function of time !,

ae)
as

e «z €7 is start time of the pattern
e . € 7 is the end time of the pattern
o and {z(t)}|q¢ is the signal 2 between times a; and cve.

Signal z is said to contain pattern a.

It is also convenient to talk about a class of patterns, which
is defined as a set of spatiotemporal patterns. A recognizer,
g: X — {T xT xC}, is a function that takes as input signals
x € X and returns sets of tuples of the form (¢, t., ¢), where
ts € T is the start time of a pattern, ¢, € 7 is its end time,
and ¢ € C is the class of the pattern. A recognizer g is said
to recognize o belonging to class ¢ and contained in signal
x if (as,ae,¢) € g(x). Sometimes, we will be interested
a specific member of the tuple(s) in g(x), which we will
denote g;(z),1 < ¢ < 3. We are interested in constructing
LSM-based recognizers.

II. LIQUID STATE MACHINES

LSMs are composed of two basic parts, a liquid and
a readout function. To understand the basic idea behind
LSMs, imagine a pool of water into which various objects
are dropped [11]. As the objects enter the liquid, they
perturb its surface, producing complex patterns, encoding
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1T is defined as the set of real numbers, R, with some associated time
unit, ¢,. For example, the number 1 € 7 with a ¢, of seconds would
indicate the time 1 second and x(1) would be the signal = evaluated at
time = 1 second.

both temporal and spatial information about the object. The
readout function transforms this information into a useful
form, e.g into a classification.

The “liquid” we use in this paper attempts to model the
complex behavior of the brain with a recurrently-connected
spiking neural network [13], or neural microcircuit, defined
as

o a finite set V' of spiking neurons,

o aset K CV xV of synapses,

o a weight wy, € R, delay d,,, > 0, and a response
function v, : Rt — R for each synapse (u,v) € F,

e and a threshold function ©, : RT™ — R for each
neuron v € V.

For the model we use, synapses are asymmetric, meaning
that if a synapse & connects neuron « with neuron 3, &
does not connect 5 to «; (B can receive a spike from «
via &, but £ does not enable spikes to reach « from (. An
excitatory synapse is one that has w, ,, > 0. An inhibitory
synapse is one that has w, , < 0. An excitatory neuron
has only excitatory outgoing synapses. An inhibitory neuron
has only inhibitory outgoing synapses. All neurons we use
will either be excitatory or inhibitory. Also, conforming to
biologically plausible values, the spiking networks used here
are composed of 80% excitatory neurons and 20% inhibitory
neurons.

As stated previously, unlike many artificial neuron models
in use today, (e.g. perceptrons and sigmoidal units), the
neurons in a neural microcircuit actually model the spiking
behavior of real biological neurons. A spiking neuron can
be thought of as an electrical circuit with a resistor and a
capacitor (see Figure 1). Current enters the circuit through

ll (t)

Fig. 1. Leaky Integrate-and-fire Neuron - The neuron receives input
current in the form of a time varying signal 1(t) (spikes from incoming
synapses). The resistor R constantly leaks current present in the
neuron. C' is a capacitor and if the voltage across the capacitance
ever exceeds the threshold ¢, the neuron fires and a spike is emitted.
The general diagram idea is taken from [14].
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Linear
Regression

State Vector Training Algorithm

Training a Liquid State Machine - An input signal (a) is transformed into spike trains via an encoding process (b). The spikes then

stimulate the liquid [neural microcircuit] (c). At regular intervals, the state of the liquid is transformed into a multi-dimensional state vector (d).
From the sequence of state vectors, a training algorithm [readout function] can be employed to classify the input data.

I(t), which then slowly leaks away because of the resistor
R. However, if ever the current in the circuit exceeds the
threshold (, a spike is released. This type of neuron model
is known as a leaky integrate-and-fire neuron and is what we
use in this paper. For more information on spiking neurons
and networks, see [14].

Network dynamics are affected by a large number of
parameters, including the weight and delay values, the
connection topology, the time constant associated with the
response function, etc. Values for these parameters are of-
ten determined by drawing randomly from some govern-
ing distribution, and earlier work investigated the affect of
these population statistics on network performance in pattern
recognition tasks [15], [16]. The modeling software we use
to simulate the spiking neural network comes from [12],
where the default network parameters are based on empirical
results gathered from recordings of the somatosensory cortex
in rats [17] [18], and, unless otherwise stated, we use these
default parameters.

The LSM performs pattern recognition as follows. The
signal x is first encoded as spike trains with some function
e: 7T xR"™ — T xR™ so that it will interact with neurons
in the circuit. This encoded signal is then transformed into
another signal with a function [ : 7 x R — 7T x RP that
encapsulates the dynamics of the liquid. Also, to enable the
use of a wide variety of training algorithms which can not
directly use spikes, samples of the state of the liquid are taken
and form a sequence of vectors, called state vectors, which
can then be used to train a readout function. This sampling
process will be denoted by s : 7 x R? — (R}), a function
that transforms a signal into sequences of state vectors.
Finally, the readout function r : (R}) — ({0,1,...,N}z),
can be trained using these state vectors to represent the
inputs. Therefore, an LSM-based recognizer is a functional
composition, g(z) = a(r(s(l(e(z))))), with a() being some
post-processing to determine timing (e.g. Algorithm 1 in
Section IV). Figure 2 displays graphically how an LSM
works.

III. ADVANTAGES OF LSMSs

One advantage of using a spiking neural network is that
it projects the input into a high-dimensional space, allowing
the learned readout function to be simple. Of course this ad-
vantage of projecting inputs into higher-dimensional spaces
is common to many learning methods, such as the kernel of
a support vector machine.

Another advantage of using an LSM is the ability to have
a memory-less readout function. Any snapshot of the state
of the network will contain information about both current
and past inputs; the waves of spikes produced by input in the
past will continue to propagate for some time, intermingling
with the waves from the current input. This process will be
referred to as integration of inputs over time. When a network
properly integrates inputs over time, a readout function can
be memory-less, relying on the network to remember and
represent past and current inputs simultaneously.

Integration of inputs over time allows patterns with extent
in time to be identified. For example, to recognize the entire
word (a nonsense word from the film “Mary Poppins”),
“supercalifragilisticexpialidocious”, one must still remember
that “super” had been said by the time “docious” is enunci-
ated; proper integration of inputs, in this case the syllables
of the word, is vital to the recognition of the entire word.

Figure 3(a) gives an example when integration over time
does not occur. Input spikes create clusters of activity within
the network, all of which die out by the time the last spike of
the stimulus occurs. Thus, it would be practically impossible
to recognize the entire sequence of spikes from snapshots of
the circuit; the neural microcircuit is unable to “remember”
previous inputs because the network parameters are not set
correctly.

In other words, imagine that each spike represents some
segment of the Mary Poppins nonsense word, e.g. the first
spike somehow meaning “super’” and the last spike represent-
ing “docious.” Since spike activity in the liquid dies out after
each input, the neural microcircuit is unable to remember
that “super” was ever said, and it would be impossible for
a readout function to learn and recognize the word in its
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Fig. 3. A stimulus encoded by five neurons is presented to two different circuits of size 90 neurons. The black dots represent when a particular
neuron has fired. The circuits are identical except for differing delay times and time constants. The first circuit experiences temporal stratification.
The second circuit behaves quite differently — the resultant activity from each of the input spikes blends together.

entirety.

A more desirable example is that of Figure 3(b). The same
input spike train is fed to a neural microcircuit, however
in this case the neural microcircuit has appropriately set
network parameters that allow the input spikes to create
a series of reactions within the recurrent network which
interact over time. Thus any snapshot of the circuit could
potentially contain information about inputs that occurred
some time in the past.

This paper explores how the benefits of LSMs, integration
of inputs over time and projection into higher dimensional
spaces, can be used to solve practical problems.

IV. STOCKPILE SURVEILLANCE DATA ALIGNMENT

Stockpile surveillance data consists of one dimensional
signals collected from non-nuclear tests of the nuclear stock-
pile. Our task is to identify the initial boundary of the
“interesting” part of the signal. Formally, given a class of
signals X, each signal x € X, contains a spatiotemporal
pattern o = (o, e, {x(t)|2¢}), and our task is to identify
the pattern’s start time, a; that is, we would like to construct
a recognizer g such that g (z) = «,. The data set contains
six classes of signals, X;, Xo, ..., Xg, with X; through X4
containing about 30 example signals each, and X5 and Xg
containing 45 example signals (see Figure 4). We show that
LSMs can solve this problem robustly with very few training
examples.
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Fig. 4. Example stockpile surveillance signals. Each signal is prototyp-
ical of the signals in its respective class. Stars indicate the boundaries
of the target pattern.

Our encoding function, e, is a simple spatial encoding in
which a number (n;,) of input neurons represent the signal
over time. Each of the input neurons is assigned to cover a
unique portion of the range, p;, of the signal:

[(<7_171(Q_“) + w, j(g,_w) tw) 1<j<np
[u=thw) o™

Nin

pj = M

J=Nin

where Q= max,cx, tcdomain(z) ©(t) and w =
minge x, tedomain(x) £(t). Then for each time ¢ having signal
value z(t), the input neuron j that has z(t) € p; will fire at
time .

For each class X;, we train a readout function r; using a
simple linear least-squares regression model on Xi.q;n C
X;. The set X; — Xirain = Xyal, 1S referred to as the
validation set. Each € Xi.qi, is translated into spikes
via Equation 1) and fed into the neural microcircuit from
which a sequence of state vectors, (o = s(l(e(z)))x),
are obtained. Each state vector is assigned an output value,
r;(or) € {0,1}, where a O signifies the state vector does not
represent the target pattern and a 1 signifies otherwise.

Algorithm 1 is used to post-process the series of output
values to compute g;(x). Intuitively, the algorithm slides a
window across the sequence of output values looking the
longest sequence of (mostly) 1s. Values for the algorithm’s
window size, § = &, and threshold, ¥ = 0.5, were determined
empirically. Also, since as a general rule the LSM tends to be
late in its prediction, as a final step we offset our prediction
for g1 (z) by the median error (on the training set): g (x) =

g1(z) — median(e), with € calculated as
Qe, — g,

Finally, we use a square column network topology of
3 x 3 x 15 neurons. The state vectors are composed of
one element for each neuron in the circuit, and they are
sampled every 0.01 seconds. The number of input neurons,
Nin, 18 set to 10. Unusual network parameter settings in-
clude eliminating the recurrent connections, and using a
mean synapse delay time of 0.1 seconds with an associated
standard deviation of 0.01 seconds.



Algorithm 1 Finding the Pattern Start Point

GIVENS:
A sequence of state vectors, (017 ..
Window size &
Threshold
& Z — T gives the time that the kth term, ok, occurred,
and {(NULL) =

7071,)

ALGORITHM:
index;mqe = NULL
current_maxr = —oo

for : =0 ton do
indexs = arg first (ZJ+6 rlon) 19)
i<j<n—4¢
3 - ]+§ r(ok
index, = argfirst (Y ;" <
) ts<j<n—4§
if Z;:L:df:jw r(og) > current_max then
index,
current-mazx = ) ;000 (o)
indexaz = indet
end if
end for
return £(indexqz)

Since the raw surveillance data possesses a wide variety
of signals, we normalize them so that they are all treated
equally by an LSM. The length of each x € X; is equalized
to 3.5 seconds, and each signal is resampled at a rate of 100
samples/second.

Also, for X3, the target pattern is so short relative to the
length of the entire signal that the duration of the target
pattern is too short for the LSM to process properly. The
solution is for the user do some rough cropping of non-
interesting portions of the signal (in this case, 70% from the
beginning and 20% from the end) and allow the LSM to do
the fine-scale work. The other set, X4, is also problematic
because the end of the signal is very similar to the target
pattern. In fact, the last portion may in fact be another
instance of the target pattern; however, we have made the
assumption that the user is only interested in one target
pattern per signal. The confusion can be solved this time
by cropping 20% from the end of the signal.

A. Results

Figure 5 displays the mean error (Equation 2) on the
validation set for an LSM for the stockpile surveillance
dataset for varying sizes of training sets. Typically, at least
four training examples are needed to achieve fairly good
accuracy. After that, the gain in accuracy for each additional

training example is nominal.

Table I compares the mean error obtained (on the val-
idation set) using LSMs with the results obtained via a
commonly used analytical method, cross correlation:

o) — e ] DG — )0 =) — )]
o) = e {@ COEm s W}

where ¢ is the delay, p, is the average of signal x, v is
a prototype for the appropriate signal class, and pu, is the
average of signal v. Intuitively, one can imagine taking v and
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Fig. 5. Amount of training data vs. error for an LSM on the stockpile
surveillance dataset.

sliding it across u, where at each shift, the sum of the product
of the signals is computed. The value of ¢ that gives the
largest value is when the signals are most highly correlated.

TABLE I
MEAN VALIDATION SET ERROR OF LSMS AND CROSS CORRELATION
FOR THE STOCKPILE SURVEILLANCE DATASET. RESULTS ARE OVER 10
RANDOM TRIALS USING 5 TRAINING INSTANCES EACH TRIAL.

Standard Cross Standard

Class LSM  Deviation Correlation Deviation
X1 0.028 0.022 0.0042 0.0039
Xo 0.048 0.075 0.0047 0.0017
X3 0.014 0.012 0.0141 0.0095
X4 0.109 0.281 0.0056 0.0040
X5 0.023 0.074 0.3153 0.1302
Xg 0.041 0.072 0.1661 0.0038
All 0.044 0.034 0.0850 0.1295

LSMs are able to robustly handle a variety of different
signals, with an average error of 4.4%. While cross correla-
tion performs better than LSMs on three of the six cases, its
results are substandard on two sets. Therefore, at least for
these data, LSMs appear to be the more robust method as
reflected in the standard deviation in the accuracies across
classes (0.034 for LSMs vs. 0.1295 for cross correlation).
Further testing needs to be done to ensure that LSMs may
be applied broadly to all types of signals and that our pre-
and post-processing steps are not over-fitting the six signal
classes represented in the dataset.

V. SPOKEN PHONEME RECOGNITION

We use the the TIMIT speech corpus [19], which con-
sists of 6300 sentences (10 unique sentences, 630 unique
speakers). However, 1260 of the sentences (according to the
corpus documentation, the SA sentences) are “shibboleth”
sentences used to distinguish between dialects and are not
used in here, leaving a total of 4040 sentences (SX and
SI sentences). Following the convention of previous papers
[20] [21] [22], we reduce the 61 phonetic labels to a subset
of 39, folding several phonemes classes together. Given a
speech signal x, our task is to label each frame of that signal



with the appropriate phonetic class. Thus, the goal is to have
93(Z frame) = ¢, Where c is the correct phonemic label.

As is common in speech recognition tasks, we use the
standard 13 Mel frequency cepstral coefficients (mfccs) as
input features. To convert the speech signals into spikes,
every 10ms we calculate mfccs for a frame size of 16ms.
We also calculate first and second derivatives of the mfccs,
for a total of 39 input features, each of which has a single
spiking neuron representing it with a rate-based encoding:

mfee;(t)
(€ — wi)

where ; is the largest i'” mfcc (Amfcc, AAmfce), w; is
the smallest i*" mfcc (Amfcc, AAmfcc), and where the
maximum rate is set to 200 Hz.

For this application the network had a topology of 6x6x25,
and parameter modifications include scaling the input con-
nection probability by 0.1, the recurrent connection proba-
bility by 0.5, and the recurrent connection weights by 0.12.
The time constant was set to 0.003 and the mean delay was
drawn from a uniform distribution between 0.001 and 0.01.

Since linear least-squares regression requires the inversion
of a matrix whose size is proportional to the number of
examples, application of this training algorithm is infeasible
for such a large corpus of data. To ameliorate this problem,
a combination of m models trained on m distinct subsets of
the corpus, is used instead, with classification determined by
majority vote (we tried values of m between 3 and 20 with
best results at m = 10). Also, for comparison we include
the results for single-layer (one per phoneme, winner-take-
all) and multi-layer perceptrons (topology: 900x1800x39).

Table II summarizes the results on a validation set of
25 sentences for each of the different approaches. Reported
accuracy is the frame-by-frame accuracy, i.e. the number of
frames correctly classified divided by the total number of
frames. For comparison, frame-by-frame accuracies reported
on TIMIT in the literature for three other techniques are also
shown.

Comparing the results from the best LSM (51.25%) to the
best accuracy reported in the literature (74.20%) indicates
that more work needs to be done. As all of the readout
functions behave poorly, the deficiency may lie not with the
approximative ability of the readout functions but instead
with the separation ability of the liquid.

Rate;(t) = - MazRate

A. Addressing Separation

Given a set of state vectors, O = {01, 09, ..., 0, }, N output
classes, and target values T = {ri(01),7:(02),...,7¢(0n)},
where 7, gives the correct output class for each o;, we divide
O into N distinct subsets, Oy, Og,...ON, Where Vi, j,0; €

0; <= r(oj) = i. For each of these N subsets, we
calculate the center of mass:
Zo~EO- Oj
Cm(0;) = ————
O]

Thus C,,,(O;) is a vector that gives the location of the center
of mass for output class 7. We propose a separation measure,

TABLE 11
FRAME-BY-FRAME ACCURACY ON THE TIMIT CORPUS FOR LSMS
WITH THREE DIFFERENT READOUT FUNCTIONS AND FOR THREE OTHER
TECHNIQUES REPORTED IN THE LITERATURE.

Method Accuracy(%)
LSM with Single-layer Perceptron readout function 39.06
LSM with m Model Regression readout function 47.84
Hidden Markov Model with ICA [21] 50.89
LSM with Multi-layer Perceptron readout function 51.25
Hidden Markov Model with mfccs [20] 52.70
Time-delayed recurrent neural network [22] 74.20

Sep(¥,0), for a given circuit ¥ and set of state vectors O:

N

Sep(¥,0) = Z

i=1 j=1

N 110, (04) = Co(O;
ZH ( )N2 (Oj)l]2 3)

Intuitively, Sep can be defined as taking the mean distance
from each O; to each Oj, resulting in N means, and then
taking the mean of those N means.

Using Equation 3, we calculate the separation for two
different sets of sentences, the validation set and another ran-
domly selected set of 25 sentences, for 20 different randomly
generated LSMs with multi-layer perceptron models as the
readout function. Figure 6 shows that the separation values
are positively correlated with accuracy; over the validation
set, the 20 data points have a correlation coefficient of
0.7936, and for the other set, the correlation is 0.7065.
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Fig. 6. The ability of Sep to predict accuracy



VI. COMMENTS

We have shown that LSMs are a robust technique for iden-
tifying the boundaries of spatiotemporal patterns in stockpile
surveillance data. We have also shown that LSMs have
potential for solving difficult temporal pattern classification
problems such as occur in a continuous speech phoneme
recognition task. We have also proposed a measure of the
liquid’s ability to separate inputs which positively correlates
with accuracy.

Several avenues for future work exist, including the in-
vestigation of alternative input encoding schemes and the
development of a readout function that directly incorporates
the timing of spike activity (thus alleviating the need for
state vectors and the sampling function s). However, perhaps
the most pressing direction for future research involves the
development of a robost training algorithm for the liquid
parameters. Here we have focused on manipulating macro-
scopic network parameters (e.g. the mean synaptic delay
time and the recurrent connection probability) rather than
directly manipulating the parameter settings of individual
neurons and synapses. This high-level approach is useful
for understanding general principles but inevitably sacrifices
some of the representational power of the spiking network.
A first natural approach to manipulating individual network
parameters might be an evolutionary exploration of the
parameter space, perhaps using the Sep metric as a fitness
function. However, the ideal way to set individual neuronal
and network properties would be with a self-organizing
spiking network, perhaps driven through a reinforcement
scheme that rewards separation of inputs for a particular
problem.
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