
Time Invariance and Liquid State Machines
Eric Goodman and Dan Ventura

Computer Science Department, Brigham Young University, Provo, UT 84602eric goodman@byu.edu, ventura@cs.byu.edu
Abstract
Time invariant recognition of spatiotemporal pat-terns is a common task of signal processing. Liquidstate machines (LSMs) are a paradigm which ro-bustly handle this type of classi�cation. Using anarti�cial dataset with target pattern lengths rangingfrom 0.1 to 1.0 seconds, we train an LSM to �nd thestart of the pattern with a mean absolute error of0.18 seconds. Also, LSMs can be trained to identifyspoken digits, 1-9, with an accuracy of 97.6%, evenwith scaling by factors ranging from 0.5 to 1.5.
Keywords: Time-invariance, Liquid State Ma-chines, Pattern Recognition, Spiking Neurons.
1 Introduction
Signals, which are any time-varying phenomenon,pervade and permeate the world we live in. The se-ries of images that
ashes across the retina of thehuman eye is a signal, as is the succession of soundsheard by the ear. Signals often contain spatiotempo-ral patterns that occur frequently and have a partic-ular meaning. These patterns can exhibit a large de-gree of variation, but despite these di�erences, identi-�cation is still necessary. This paper focuses on time-invariant classi�cation of spatiotemporal patterns.Formally, a signal is simply a function of time,x : T ! R. A spatiotemporal pattern, �, is a tu-ple (�s; �� ; fx(t)gj�s+���s) where� �s 2 T is start time of the pattern� �� 2 R is the temporal length of the pattern� and fx(t)gj�s+���s is the signal x between times�s and �s + �� .Signal x is said to contain pattern �.It is also convenient to talk about classes of pat-terns, which are de�ned as any arbitrary set of spa-tiotemporal patterns. A classi�er, r : X ! fT �R�Cg, is a function that takes as input signals x 2 Xand returns sets of tuples of the form (s; �; c), wheres 2 T is the start time of a spatiotemporal pattern,� 2 R is the duration, and c 2 C is the class of the

pattern. A classi�er r is said to recognize a pattern� belonging to class c and contained in signal x if(�s; �� ; c) 2 r(x). Also, a classi�er r is said to recog-nize a class c if for all x 2 X and for all � 2 c, if xcontains �, (�s; �� ; c) 2 r(x).In this paper we are interested in time-invariantclasses of patterns, i.e. patterns that are the same ex-cept for location in time and scaling along the time di-mension. For clarity, these two ideas shall be referredto as time-shift and time-scale invariance. More pre-cisely, a class c is said to be time-shift invariant, ifgiven any patterns �; � 2 c contained in signals xand y, respectively, �� = �� and for all � 2 [0; ��],x(�s + �) = y(�s + �). A class c is time-scale invari-ant if x(�s + �) = y(�s + k�) for all � 2 [0; �tau] andfor any k > 0. Of course for practical purposes, kwill most likely be restricted to some range, but theobjective is to have as a large a range as possible.This paper demonstrates that a paradigm knownas liquid state machines (LSMs) [2] [5] [6] can achieveclassi�cation for both types of time-invariance. Sec-tion 2 gives a brief introduction to LSMs. Sections3 and 4 present the results LSMs achieve on twodatasets which exhibit time variance. Section 5 thenwraps up with some conclusions and ideas for futurework.
2 Liquid State Machines
To understand the basic idea behind LSMs, imagine apool of water into which various objects are dropped[6]. As the objects plunge into the liquid, they per-turb the surface of the liquid, resulting in complexpatterns. These patterns provide a history and de-scribe both temporally and spatially how the objectsentered the liquid. Stated another way, we have a sig-nal x, which is transformed into another signal with afunction d that encapsulates the dynamics of the liq-uid. Then a readout function r can then be trainedfrom the transformed signal d(x) to classify the in-puts.Now, instead of a pool of water, consider for a mo-ment the human brain as a liquid. Inputs enter the

Figure 1: Training a Liquid State Machine - First an input signal (a) is transformed into spikes trains via some encodingprocess (b) (black dots represent times when a neuron spiked). The spikes then stimulate the liquid (c), which in this case is aneural microcircuit. At regular intervals, the state of the liquid is transformed into a multi-dimensional state vector (d). Fromthe sequence of state vectors (d), a training algorithm can be employed to classify the input data, in this case linear regression.
brain through a variety of sources - through eyes andears and any of the other senses. These inputs areencoded via spike trains, or in other words, series ofelectrical impulses which form the basis of communi-cation between neurons. These input spikes in turncause a cascade of spikes within the brain, producingcomplex interactions, analogous to the ripples andinterference patterns produced in the pool of water.The liquid we use in this paper attempts to modelthe complex behavior of the brain with a recurrently-connected spiking neural network, often called a neu-ral microcircuit (the modeling software is from [7]).A spiking neural network consists of a �nite set V ofspiking neurons, a set E � V �V of synapses, a weightwu;v � 0 and a response function �u;v : R+ ! R foreach synapse hu; vi 2 E, and a threshold function�v : R+ ! R+ for each neuron v 2 V . For moreinformation on spiking networks, see [1] and [4].Unlike many arti�cial neuron models in use today,(e.g. perceptrons and sigmoidal units), the neuronsin a neural microcircuit actually model the spikingbehavior of real biological neurons. Aside from pro-viding many more degrees of freedom, spiking neu-rons can naturally represent time-varying functions,since by de�nition they are a temporal phenomenon.Also, neural microcircuits have the potential to re-tain information from inputs far in the past, allowinginputs to be integrated together over time.As stated before, a readout function r is trained onthe output of the liquid, d(x). However, since the liq-uid we use is a neural microcircuit, often x must �rstbe encoded as spike trains with some function e inorder to interact with neurons of the circuit. Also, toenable the use of a wide variety of training algorithmswhich can not directly use spikes, samples of the stateof the liquid are taken and form a series of vectors,called state vectors, which can then be used to traina readout function. This sampling process will be de-noted by a function s. All together, the applicationof an LSM to a signal x can be described by the ex-

pression r(s(d(e(x)))). Figure 1 displays graphicallyhow an LSM works.For the most part, the default parameters of themodeling software are used, except as explicitlystated in each individual section. However, all experi-ments have the following parameters settings in com-mon. Linear least-squares regression, a fairly sim-ple algorithm limited in its representational power,is chosen for the training of the readout function sothat results can be attributed more to the circuit andits ability to simplify the task of classi�cation ratherthan to the power of the learning algorithm. Also,both experiments use a network size of 135 neurons,with the topology of the circuit being a square columnof dimension 3 � 3 � 15 neurons. The state vectorsare composed of 135 elements, one element for eachneuron in the circuit. Each element is a rough ap-proximation of �ring rate of the neuron at the timeof the sample.
3 Boundary Detection
This �rst problem tests both the time-shift and time-scale invariant properties of the LSM on an arti�-cial dataset that mimics real world problems. Thebasic problem can be described as follows. Thereis a set of time-shift and time-scale invariant pat-tern classes, C = fc0; c1; :::; cng, and a set of sig-nals, X = fx0; x1; :::; xmg. The task is to �nd the�s and �� of any pattern � 2 C contained in somexi 2 X. The problem we solve here is somewhatsimpli�ed in that we only consider one pattern class,C = fc0g, and signals which have the general formxi = [�i; �i; �i], i.e. the pattern �i 2 c0 is sand-wiched between two portions of the signal which arecompletely random, �i and �i.The arti�cial dataset is created in the followingmanner. A template of 100 points is created, drawnfrom a uniform distribution ranging from -1 to 1.

This template, considered to be of length 0.55 sec-onds, is then scaled along the time dimension to cre-ate 100 instances or target pattern �i's between 0.1seconds to 1 second in length, again using a uniformdistribution. Each of the 100 �i's is also sandwichedbetween two random signals, i.e. �i and �i. Every �iand �i is created uniquely, though in a similar man-ner to how the template that formed the basis foreach of the �i is created. Like the template, each ran-dom piece is created from 100 points, drawn from thesame uniform distribution. Also like the template,they are considered to be of length 0.55 seconds andthen scaled to the range between 0.1 seconds and 1second in length. The only di�erence being that eachrandom piece is created uniquely and never repeated,not within the same signal nor in any other xi. Fi-nally, each instance is then sampled at a rate of 100samples per second, using linear interpolation to �ndthe values between points.Each xi is translated into spikes in the followingmanner. A number of input neurons, nin is chosenthat will represent the signal over time, for these ex-periments nin = 10. Now, each of the input neu-rons is assigned to cover a portion of the range ofthe signal. The assigned range for each neuron, rj , iscalculated with following formula:
rj = ([(j�1)(
�!)nin + !; j(
�!)nin + !) 1 � j < nin[(j�1)(
�!)nin + !;
] j = nin

where
 is the maximum value in the range and ! isthe minimum value. Then for each time t correspond-ing to a discrete point in the signal having value xi(t),the neuron j that has xi(t) 2 rj would �re at time t.The dataset is divided into ten di�erent randomlygenerated subdivisions of 80% for training and 20%for validation. From each of the training subdivi-sions, a linear regressive model is trained on the statevectors, which is then tested on the validation set.An example application of a model to an instance isshown in Figure 2.As stated earlier, samples of the circuit, state vec-tors, are taken at periodic intervals and a determina-tion is made by the readout function as to whetherthat sample point belongs to the target pattern class.A moving average is used to approximate �is and �i�for each signal xi. More speci�cally, given a sequencev0, v1, ...,vn, of state vectors, a readout function r, awindow size �, and a threshold �, the following for-mulae describe how �is and �i� are approximated:
ts = arg �rst0�j�n

0@j+�X
k=j r(vk)� > �

1A

Figure 2: Orignal signal and output of a trained
model applied to it - The dark colored diamonds in-dicate the output of the model. A 1 denotes the modelbelieves the pattern is present; a zero denotes otherwise.The vertical dashed lines represent when the pattern isactually occurring, while the stars indicate the estimatedstart and stop times of the target pattern

t� = arg �rstts<j�n
0@j+�X

k=j r(vk)� < �
1A

�̂is = �(ts)�̂i� = �(t�)� �(ts)where the function � : Z ! T gives the time at whichthe jth state vector is sampled.After the start and end times of the pattern are es-timated on the training data, the median error is usedto o�set the estimation. For example, the adjustmentfor the start times is accomplished by
est(i) = est(i)�median(�)

where est(i) signi�es the estimated start time for sig-nal xi and � represents the set of start errors fromthe initial estimation. Similarly, the end times areadjusted. As a general rule, the LSM has a tendencyto be late in its prediction, so subtracting the medianerror helps to correct this fault.
Experiment 1 2 3Mean Syn. Delay(s) default 0.01 0.55Train Error Start (s) 0.21 (0.02) 0.23 (0.03) 0.16 (0.02)Train Error Stop (s) 0.19 (0.03) 0.19 (0.02) 0.16 (0.02)Val. Error Start (s) 0.30 (0.06) 0.22 (0.04) 0.18 (0.03)Val. Error Stop (s) 0.25 (0.06) 0.19 (0.03) 0.15 (0.04)

Table 1: Average error from three experiments on theboundary detection problem. Numbers in parenthesis de-note standard deviations.Table 1 shows the results on the dataset for threedi�erent tests. In all three cases, the circuit is sam-pled every 0.01 seconds. The only parameter that isvaried in each of the three tests is the mean delay

time of the synapses. The �rst test uses the defaultmean delay time, which varies from 8e-4 to 1.5e-3 sec-onds, depending on the type of synapse. The secondtest sets the mean delay time for all synapses to 0.01seconds, and the �nal test has it at 0.55 seconds.
4 Spoken Digit Recognition
This next problem tests the time-scale invariant prop-erties of the LSM using a sample of spoken digits.The task is to be able to identify the spoken digits,1-9, despite time-scaling variances. Two examples ofeach digit are selected from the TIDIGITS corpus [3]and any silence is removed so that just the speechsignal remains. To test the time-scale invariance, nu-merous additional instances are created by shorten-ing and lengthening the original signals by a factorc 2 f0:5; 0:55; 0:60; :::; 1:40; 1:45; 1:5g. The resultantdataset is of size 378 instances.The translation process into spikes di�ers fromwhat is used in the previous example. Each instanceis �rst translated into series of 13 Mel frequency cep-stral coe�cients (mfccs). The frame size, ns, whichis the number of points used to compute the Fouriertransform, is set to be the largest number of pointswhich is both a power of two and less than 30 ms.The frame rate, or how often mfccs are calculated, isthen set to be ns2 . Each of the 13 mfccs is assigned itsown neuron to represent it. The maximum and mini-mum values of each the mfccs across all instances arefound. From these maximum and minimum values,the �ring rate of of each of the 13 neurons is deter-mined by the following equation:

Ratei(t) = mfcci(t)(
i � !i) �MaxRate
where
i is the largest ith mfcc, !i is the smallest ithmfcc, and where the maximum rate is set to 200 Hz.

Experiment 1 2 3Mean Syn. Delay(s) default 0.5 1Train Acc.(%) 90.46(3.41) 97.79(0.59) 98.26(1.05)Val. Acc.(%) 80.00(5.61) 96.46(2.05) 97.59(2.11)
Table 2: Average accuracy for three experiments on thespeech data. Numbers in parenthesis denote standarddeviations.Table 2 displays the results obtained on the speechdata. Three experiments are conducted, each withvarying mean delay times. The sample rate is heldconstant, sampling every 0.1 seconds. As with theprevious experiment, ten iterations are run on tendi�erent subdivisions of the dataset, with 80% usedfor training and 20% used for validation.

5 Conclusions and FutureWork
LSMs provide a robust way of handling signals thatrequire time-invariant classi�cation of spatiotempo-ral patterns. The �rst arti�cial dataset provides evi-dence that LSMs can give good accuracy even whenthere exists a large amount of time-shift and time-scale variance in the data. The more realistic problemof identifying digits further shows that LSMs have thepotential to solve real-world problems that demon-strate time-scale variance.Better methods for determining �s and �� need tobe explored; the naive approach of using a movingaverage worked well for a �rst attempt, but couldbe much improved, perhaps with statistical meth-ods. Also, further study is required to understandhow delay times a�ect the accuracy of the LSM. Re-sults from both datasets hint that long mean delaytimes somehow increase accuracy, but how and whyremains unexplained.
AcknowledgementsWe thank Sandia National Laboratories for partiallyfunding this research.
References
[1] W. Gerstner and W.M. Kister. Spiking Neuron Mod-

els: Single Neurons, Populations, Plasticity. Cam-bridge University Press, 2002.[2] S. H�ausler, H. Markram, and W. Maass. Perspectivesof the high dimensional dynamics of neural microcir-cuits from the point of view of low dimensional read-outs. Complexity (Special Issue on Complex Adaptive
Systems), 8(4):39{50, 2003.[3] R.G. Leonard and G. Doddington. Tidigitsspeech corpus. http://morph.1ds.upenn.edu/Catalog/LDC93S10.html, 1993. Texas Instruments, Inc.[4] W. Maass. On the complexity of networks of spikingneurons. In Advances in Neural Information Process-
ing, volume 7, pages 183{190, Cambridge, 1995. MITPress.[5] W. Maass, T. Natschl�ager, and H. Markram. Real-time computing without stable states: a new frame-work for neural computation based on perturbations.
Neural Computation, 14(11):2531{2560, 2002.[6] T. Natschl�ager, W. Maass, and H. Markram. The\liquid computer": a novel strategy for real-time com-puting on time series. Special Issue on Foundations of
Information Processing of TELEMATIK, 8(1):39{43,2002.[7] Neural microcircuits. http://www.lsm.tugraz.at/index.html.

