
Effectively Using Recurrently Connected Spiking
Neural Networks

Eric Goodman
Computer Science Department

Brigham Young University
Provo, UT 84602

E-mail: ericgoodman@byu.edu

Dan Ventura
Computer Science Department

Brigham Young University
Provo, UT 84602

E-mail: ventura@cs.byu.edu

Abstract— Recurrently connected spiking neural networks are
difficult to use and understand because of the complex non-
linear dynamics of the system. Through empirical studies of
spiking networks, we deduce several principles which are critical
to success. Network parameters such as synaptic time delays and
time constants and the connection probabilities can be adjusted
to have a significant impact on accuracy. We show how to adjust
these parameters to fit the type of problem.

I. I NTRODUCTION

A number of artificial neural models have been developed in
an attempt to emulate the characteristics of the brain that allow
learning. Much research has focused on two general models,
perceptrons and sigmoidal units. While these two models have
been shown to be useful and applicable to a wide range
of problems, recent research has revealed several reasons,
theoretical and biological, that compel an investigation into
a more complex representation, one that actually models the
spiking behavior of biological neurons.

Unlike perceptrons and sigmoidal units, biological neurons
communicate and convey information via electrical pulses,
commonly called spikes. For instance, the speed at which a
muscle contracts is proportional to the rate at which neurons
within the muscle produce spikes, or fire [8]. This type of
encoding is known as rate-based, signifying that the firing rate
of the neuron communicates information.

The assumption of a rate-based encoding allows perceptrons
and sigmoidal units to abstract away the spiking behavior
of biological neurons. However, with the extra degrees of
freedom available to spiking neurons via a host of additional
parameters, they have much more flexibility and represen-
tational power than their rate-based cousins. Additionally,
spiking neurons have an inherent advantage when learning
time-varying functions since they are by definition a temporal
phenomenon. However, despite these apparent advantages, the
complex non-linear dynamics of recurrently connected spiking
networks defies attempts at analytical study and comprehen-
sion; as a result, no general method exists that efficiently uses
the full capability of spiking neurons.

Through empirical studies of spiking networks, we provide
results that prove insightful, allowing more efficient use of the
representational power of spiking neurons. In particular, we
examine four network parameters: the mean synaptic delay,d,

the standard deviation of the synaptic delay,dσ, the mean
synaptic time constant,τ , and the connection probability
between input neurons and network neurons,cprob.

This paper explores spiking networks within a paradigm
known as liquid state machines (LSMs) [5] [7] [6], described
in more detail in section II and III. An artificial problem,
described in section IV, is developed in order to elucidate
important principles necessary for success using a spiking
neural network. Section V presents the results. Section VI then
wraps up with some conclusions and ideas for future work.

II. L IQUID STATE MACHINES

LSMs are composed of two basic parts, a liquid and a
readout function. To understand the basic idea behind LSMs,
imagine a pool of water into which various objects are dropped
[7], where each object belongs to certain output class in the
set {S0, S1, ..., SN}. As the objects plunge into the liquid,
they perturb the surface of the liquid, resulting in complex
patterns. These patterns provide a history and describe both
temporally and spatially how the objects entered the liquid.
Stated another way, we have a signalx : T → Rn, a
function of time, which is transformed into another signal
with a functionl : T ×Rn → T ×Rm that encapsulates the
dynamics of the liquid. Then a readout functionr : T ×Rm →
T × {0, 1, ..., N}, can then be trained from the transformed
signal l(x) to classify the inputs. Overall, the process can be
described succinctly asr(l(x)).

Now, instead of a pool of water, consider for a moment
the human brain as a liquid. Inputs enter the brain through a
variety of sources - through eyes and ears and any of the other
senses. These inputs are encoded via spike trains, or in other
words, series of electrical impulses which form the basis of
communication between neurons. These input spikes in turn
cause a cascade of spikes within the brain, producing complex
interactions, analogous to the ripples and interference patterns
produced in the pool of water.

The liquid we use in this paper attempts to model the
complex behavior of the brain with a recurrently connected
spiking neural network, often called a neural microcircuit.
Formally, aspiking neural network[4] consists of

• a finite setV of spiking neurons,
• a setE ⊆ V × V of synapses,



Fig. 1. Training a Liquid State Machine - First an input signal (a) is transformed into spikes trains via some encoding process (b) (black dots represent
times when a neuron spiked). The spikes then stimulate the liquid (c), which in this case is a neural microcircuit. At regular intervals, the state of the liquid
is transformed into a multi-dimensional state vector (d). From the sequence of state vectors (d), a training algorithm can be employed to classify the input
data, in this case linear regression.

• a weight wu,v ≥ 0, delay du,v ≥ 0, and a response
functionγu,v : R+ → R for each synapse〈u, v〉 ∈ E,

• and athreshold functionΘv : R+ → R+ for each neuron
v ∈ V .

For the model we use, each synapse is directional, meaning
that if a synapseξ connects neuronα with neuronβ, ξ does
not connectβ to α; β can receive a spike fromα via ξ, but
ξ does not enable spikes to reachα from β. An excitatory
synapseis one that haswu,v ≥ 0. An inhibitory synapse
is one that haswu,v < 0. An excitatory neuronhas only
excitatory outgoing synapses. Aninhibitory neuronhas only
inhibitory outgoing synapses. All neurons we use will either
be excitatory or inhibitory. For more information on spiking
networks, see [1]. The modeling software we use to simulate
the spiking neural network comes from [6], where the default
network parameters are based on empirical results gathered
from recordings of the somatosensory cortex in rats [2] [3].

As stated before, a readout functionr is trained on the
output of the liquid,l(x). However, since the liquid we use
is a neural microcircuit, oftenx must first be encoded as
spike trains with some functione : T × Rn → T × Rn

in order to interact with neurons of the circuit. Also, to enable
the use of a wide variety of training algorithms which can
not directly use spikes, samples of the state of the liquid are
taken and form a sequence of vectors, calledstate vectors,
which can then be used to train a readout function. This
sampling process will be denoted bys : T ×Rm → {(Rm)k},
a function that transforms a signal into sequences of state
vectors. All together, the application of an LSM to a signal
x can be described by the expressionr(s(l(e(x)))), where
r : {(Rm)k} → {({0, 1, ..., N})k}, i.e. a function from
sequences of state vectors to sequences of output classes.
Figure 1 displays graphically how an LSM works.

In the simplified problem we study in this paper, each signal
x belongs to a single output class, i.e.∀k, r(s(l(e(x))))k = i,
for some i ∈ {0, 1, ..., N}. Thus, we simplify the readout
function to be a function that takes sequences of state vectors,
combines them in some fashion, and outputs class member-
ship, i.e.r : {(Rm)k} → {0, 1, ..., N}.

This paper explores several network parameters and their
effect on performance. All of the parameters that we examine
are related to the synapses between neurons. As stated before,
each synapse has an associated delay time,du,v. This is the
time it takes for a spike to propagate along the synapse from
one neuron to the other. For all the networks we use in this
paper, all of thedu,v are drawn from a gaussian distribution.
We vary both the mean,d, and the standard deviation,dσ, of
this distribution to understand their effects.

We examine bothd anddσ for each of the four following
different types of synapses: (1) from an excitatory neuron to an
excitatory neuron,EE, (2) from excitatory to inhibitory,EI,
(3) from inhibitory to excitatory,IE, and (4) from inhibitory to
inhibitory, II. The defaultd for each type of synapse is either
8 × 10−4 or 1.5 × 10−3 seconds. However, unless explicitly
stated that the default values are being used,d will refer to a
mean over all types of synapses, i.e.d = EE = EI = IE =
II. The default value fordσ is 0.1d.

The synaptic time constant,τ , is another parameter we in-
vestigate. The time constant is related to the response function,
γu,v, and governs how long a spike’s influence remains. For
instance, consider the simple response function:

γ(t) = I0 ∗ e
−(t−t0)

τ , t ≥ t0 (1)

whereI0 ∈ R+ is the value the synapse attains after a spike
andt0 is the time of the most recent spike. The largerτ is, the
longer the influence of a spike will last. Unlike the synaptic
delay,τ is the same for each synapse of the same type. The
default value forτ is either3 × 10−3 or 6 × 10−3. As with
the mean synaptic delay,τ will be the same across all synapse
types unless the default values are specified.

Finally, the fourth parameter we adjust is the connection
probability, cprob, between the input neurons and the neural
microcircuit. The default value forcprob is 0.2 for inhibitory
neurons in the circuit and 0.3 for excitatory neurons. We scale
these probabilities by a factork ∈ {1, 2, 3, 4, 5}. Whenk = 5,
the probabilities are above 1.0 and every input neuron forms
a synapse with every network neuron.

Except for the above listed parameters, most of the default
settings of the modeling software are used. However, all



(a) (b)

Fig. 2. A stimulus encoded by five neurons is presented to two different circuits of size 90 neurons. The black dots represent when a particular neuron has
fired. The circuits are identical except for differing delay times and time constants. The first circuit experiences temporal stratification. The second circuit
behaves quite differently; the resultant activity from each of the input spikes blends together.

experiments have the following parameter settings in common.
Linear least-squares regression, a fairly simple algorithm lim-
ited in its representational power, is chosen for the training
of the readout function so that results can be attributed more
to the neural microcircuit and its ability to simplify the task
of classification rather than to the power of the learning
algorithm. Also, all of the experiments use a network size
of 90 neurons, with the topology of the network being a
square column of dimension3 × 3 × 10 neurons. This size
possesses sufficient representational capability to solve most
of the problems we discuss, while at the same time being small
enough to exhibit some weaknesses. Recurrent connections
within the circuit have an average distance of 2 (i.e. 2 neurons
apart within the3× 3× 10 regular grid) and are governed by
the default values forcprob for each type of synapse. The ratio
of excitatory to inhibitory neurons is 4:1. The state vectors are
composed of 90 elements, one element for each neuron in the
network. Each element is a rough approximation of the firing
rate of the neuron at the time of the sample.

III. A DVANTAGES OF LSMS

One advantage of using a spiking neural network is that it
projects the input into a high-dimensional space, allowing the
learned readout function to be simple. Of course this advantage
of projecting inputs into higher-dimensional spaces is common
to many learning methods, such as the kernel of a support
vector machine.

Another advantage of using an LSM is the ability to have
a memory-less readout function. Any snapshot of the state of
the network will contain information about both current and
past inputs; the waves of spikes produced by input in the past
will continue to propagate for some time, intermingling with
the waves from the current input. This process will be referred
to asintegration of inputs over time. When a network properly
integrates inputs over time, a readout function can be memory-
less, relying on the network to remember and represent past
and current inputs simultaneously.

Figure 2(a) gives an example when integration over time
does not occur. Input spikes create clusters of activity within
the network, all of which die out before the last spike of the

stimulus. Thus, it would be practically impossible to recognize
the entire sequence of spikes from snapshots of the circuit; the
neural microcircuit is unable to “remember” previous inputs
because the network parameters are not set correctly.

A more desirable example is that of Figure 2(b). The same
input spike train is fed to a neural microcircuit, however in
this case the neural microcircuit has appropriately set network
parameters that allow input spike activity interaction over time.
Thus any snapshot of the circuit could potentially contain
information about inputs that occurred some time in the past.

This paper explores how to best make use of the benefits
of LSMs: projection of inputs into higher dimensional spaces
and integration of inputs over time.

IV. PROBLEM DESCRIPTION

Datasets are constructed in the following manner.N tem-
plates are created, each representing a different output class.
Each template is composed ofλ input channels. The input
channels are poisson-distributed spike trains, strictly monoton-
ically increasing sequencest0, t1, ..., tn, with a mean value of
100 spikes per second. For all experiments, the lengths of the
spike trains of each input channel are set to be the same value,
ζ, which implies that eachtn ≤ ζ. From theseN templates,
gaussian jitter is added to the templates to form new instances
of the form t0 + ε0, t1 + ε1, ..., tn + εn, where eachεi is a
number drawn from a gaussian distribution with zero mean and
standard deviation of10−3 seconds. These instances are then
divided up into a training set and a validation set. Also, for
some experiments, random noise is inserted at the beginning
of the spike trains, i.e.t0 + ε0, t1 + ε1, ..., tn + εn becomes
r0, r1, ..., rm, t0 + ε0 + δ, t1 + ε1 + δ, ..., tn + εn + δ, where
r0, r1, ..., rm is a randomly generated sequence andδ is the
length of that sequence. The portiont0 + ε0 + δ, t1 + ε1 +
δ, ..., tn + εn + δ shall be identified as thetarget pattern.

The goal then is to train a readout function,r, so that
given an instanceη, r(s(l(η))) = c(η), wherec(η) returns the
output class ofη. The functionr combinesN linear regressive
models,m1, m2,...,mN . Eachmi is trained on the set of state
vectors from the training set with target values{0, 1}, a 1 for
state vectors belonging to classi, and a 0 otherwise. Then,



Fig. 3. Results from varyingd, τ , anddσ . Each graph hasdσ held constant whiled andτ are varied. Color indicates accuracy.

given a sequence of state vectors for a particular instance,
{s(l(η))k}, r outputs

arg max
i

∑k
j=1 mi(s(l(η))j)

k
(2)

V. RESULTS

This section presents the results of a number of experiments
using an LSM to solve the above task. The first experiment
varies three network parameters,d, τ , anddσ, to see how they
influence accuracy. The second experiment adds noise to the
beginning of the target patterns to examine its effect. The third
experiment again explores how noise affects performance, but
also assess how well the LSM can handle large numbers of
output classes. Finally, the last three experiments try to solve
the noise problem by adding more information into the circuit.

For all experiments except 3, the state vectors are sampled
every 0.01 seconds, starting at time

0.5l + δ + min{EE,EI, IE, II} (3)

and ending before time

1.33l + δ + max{EE,EI, IE, II} (4)

The rationale behind these equations is to provide data on
the state of the network when the target pattern is actually
occurring. The constants 0.5 and 1.33 are an indication that
the circuit may take a while to respond to the target pattern’s
input spikes, and that the network may continue to represent
the pattern past the time when input spikes are being received.

Also, for all experiments except 5, the number of input
channels is set atλ = 1. For each run of the algorithm, sets
of instances and neural microcircuits are uniquely generated
within parameter constraints. Finally, each data point repre-
sents the mean over ten trials.

A. Experiment 1: Parameter Exploration

This first experiment reveals the effect of varyingd, dσ, and
τ on the target task. We setN = 20 and bothd and τ are
sampled at values in the range[0.001, 0.100] while dσ is sam-
pled at the five discrete values{10−4, 10−3, 10−2, 10−1, 100}.
The length of each template is set toζ = 0.1 seconds and the
length of the noise inserted at the beginning is set toδ = 0.
The training set size is set to 400 and the validation set to 200.
Figure 3 displays the validation results of the experiments.

From Figure 3, several trends are distinctly noticeable. For
one, varyingdσ does not have a significant impact as long as
dσ is small enough. Associated with each valuedσ is a set of
points inR3 consisting of a value ford, a value forτ , and the
classification accuracy achieved. Linearly interpolating from
these points, sampling at each combination(d, τ),∀d, τ ∈
{0.001, 0.002, ..., 0.100}, produces a100 × 100 matrix of
interpolated accuracy values. The Frobenius norm is calculated
on the difference between each of the five resultant matrices
(one for each value of the time delay standard deviation),
which shows quantitatively how similar they all are to one
another. Table I presents these results below. As indicated from
the table, the values10−4, 10−3, and10−2 give accuracies that
are very close to each other.

TABLE I

NORM OF THE DIFFERENCES BETWEEN RESULTS

dσ 10−4 10−3 10−2 10−1 1
10−4 0 2.54 3.02 8.50 6.31
10−3 2.54 0 3.00 8.59 6.3
10−2 3.02 3.00 0 8.13 5.88
10−1 8.50 8.59 8.13 0 4.82

1 6.31 6.30 5.88 4.82 0

Also interesting is that biologically non-realistic values for
d performed the best. Generally speaking, the ranged ∈
[0.4, 1.0] and τ ∈ [0.005, 0.04] provided the best results,
especially whendσ = 10−4, 10−3, 10−2. Since the simulation
of the circuit is limited to a short time according to (4), such



large values ford ensure that the state of the network at timet
is almost wholly dependent on inputs around timet−d. Thus,
in this case, the performance of the LSM depends heavily upon
the circuit’s ability to project inputs into a larger dimensional
space rather than integrating inputs over time. Smaller values
for d allow spikes propagating along recurrent connections to
interfere with the current inputs.

B. Experiment 2: Effect of Noise

If the reason that larger values ford result in better per-
formance is due to lack of interference from recurrent inputs,
then adding enough noise to the beginning of the signal should
result in markedly degraded performance of the LSM. If the
noise at the beginning of the signal has lengthδ, such that
δ ≥ d and δ ≥ ζ, then circuit will first be stimulated by the
noise that later causes interference along recurrent connections
during the entire processing of the target pattern. Havingδ ≥ d
insures that interference occurs at the beginning of target
pattern processing whileδ ≥ ζ insures that the interference
continues throughout the entire processing of the target pattern.
To test this hypothesis, we repeated the same experiment as
above, limiting it todσ = 1 × 10−4, but settingδ = 0.1, the
same length as the target pattern. Figure 5 displays the results
of this experiment.

Fig. 4. Results from varyingd and τ , keepingdσ = 10−4, and adding
noise,δ = 0.1.

As expected, the performance of the LSM is severely
degraded. However, the primary factor affecting performance
is not d but insteadτ . Smaller values forτ provide the best
accuracy in this situation, which is most likely due toτ ’s large
impact on how long a neuron’s spike affects the network. Ifτ
is large enough, a critical point is reached when activity within
the network continues indefinitely with just a few input spikes
to start it. Thus, large values ofτ have the potential to allow
disruptive interference from the past.

C. Experiment 3: LargeN and the Effect of Noise

The following experiment tests the robustness of the LSM
to large numbers of output classes but also tests how noise
affects performance. The parameters of the network are set
to values that perform well in Experiment 1, namelyd =
0.5, τ = 0.010, anddσ = 10−4. The only variables that are
modified areN , ranging from 20 to 200, andδ, set to either
0 or 0.1. Also, two sets of trials are conducted using only one

sample point from each instance, the end of the simulation
according to (4). The other two sets of trials use the sampling
procedure as defined in the introduction of this section. Finally,
the training set size is set to20N and the validation set size
to 10N . Figure 5 displays the results.

Again, noise has a significant detrimental effect on perfor-
mance. However, without noise, the LSM shows surprising
robustness in its ability to handle large numbers of output
classes, especially when only one sample point is used. When
multiple sample points are used, performance for both noisy
and non-noisy trials is worse than when only one sample point
is used. This is probably due to the simpleness of the learning
algorithm and its inability to reconcile multiple state vectors
as representing the same output class.

Fig. 5. Varying the Number of Output Classes:N is varied from 20 to
200 in increments of 20.

D. Experiment 4: Increasing Information by Increasing Con-
nection Probability

The more information the network has about target patterns,
the more likely the training algorithm will be able to learn the
output classes. The first method we examine to increase the
information available to the network is by simply increasing
the connection probability,cprob. With only one input channel
and with cprob by default ranging between 0.2 and 0.3, the
number of network neurons that receive synapses from the
input neuron is likely less than one third. With such a low
number of network neurons receiving input spikes, perhaps
the computational power of the network is being wasted.

Two sets of d and τ are tried: the default values and
d = 0.003 andτ = 0.004. These values are chosen since they
behave poorly in the previous experiments with noise; here
we desire to elucidate principles that can be used to improve
performance in the event that input data might contain noise.
Other parameter settings include the following:dσ = 10−4,
δ = 0.1, ζ = 0.1, the training set size is 1000, and the
validation set is of size 200. The results are shown in Figure
6. Increasingcprob does increase accuracy, but it is still not at
the level when no noise is present.

E. Experiment 5: Increasing Information with More Input
Channels

This experiment tests whether more input channels, and thus
more information, increase accuracy. Each additional input



Fig. 6. The probability of a connection between an input neuron and a
network neuron is scaled from its default value. At a scale factor of 5, the
probability of connecting a input neuron and network neuron is one.

channel is created in the same fashion as whenλ = 1. Since
each channel is created randomly, the correlation between the
channels should be fairly low, thus providing much additional
information. This experiment is identical to the previous
experiment except for the fact thatcprob is now kept constant
at its default value and that the number of input channels
now varies. The results are below in Figure 7. Increasing the
number of input channels has a positive effect on accuracy.

Fig. 7. The number of input channels is varied from 1 to 10.

F. Experiment 6: Increasing Information with Longer Pattern
Lengths

Finally, this experiment tests how increasing the pattern
length might help the LSM. This experiment is exactly like
the previous, except nowζ is no longer fixed butδ remains
so. Also, the number of input channels is fixed at 1 andcprob

is scaled by 4, as Experiment 4 indicates will probably be
best for λ = 1. Figure 8 displays the results. As expected,
the longer pattern lengths are easier to recognize; however,
the accuracy does peak. This is probably due to the fact that
as ζ increases, so do the number of sample points. Thus the
readout function must reconcile an increasingly larger set of
states that represent the same output class.

VI. CONCLUSIONS ANDFUTURE WORK

Taken together, the experiments suggest two different ap-
proaches to two different problems, differentiated by the
presence of noise. If all the instances have no noise, then the

Fig. 8. The target pattern length is varied from 0.1 to 1.0 seconds.

large d values appear to work very well. Using just a single
sample point of the network, we are able to achieve good
accuracy for over a hundred output classes. However, if the
instance contains noise, then smallτ values work the best.

However, if there does exist noise, the task is much more
difficult. Even with smallτ values, the accuracy achieved does
not compare to the no-noise situation. Much more information
is required by the network to solve the task. The best way to
do this is through multiple channels that contain somewhat
uncorrelated information about the target pattern. Also, longer
pattern lengths can help. Finally, a small benefit is gained by
increasing the input to network connection probability.

A scenario that this paper does not address is the case when
an instance contains multiple target patterns. Thus, instead
of random noise interfering with classification, target patterns
from different output classes cause the interference. As future
work, it would be interesting to see if the results concerning
noise also apply to this case.

This paper has barely touched the surface of understanding
the complex dynamics behind recurrently connected spiking
neural networks. With so many parameters, it is difficult to say
with certainty that under all conditions a certain principle holds
true. More work should be done to validate the conclusions
of this paper across other problems, both artificial and real.

REFERENCES

[1] W. Gerstner and W.M. Kister,Spiking Neuron Models: Single Neurons,
Populations, Plasticity, Cambridge University Press, 2002.

[2] A. Gupta, Y. Wang, and H. Markram, “Organizing principles for a
diversity of GABAergic interneurons and synapses in the neocortex,”
Sciencevol. 287, pp. 273–278, 2000.

[3] H. Markram and Y. Wang and M. Tsodyks, “Differential signaling via the
same axon of neocortical pyramidal neurons”Proceedings of the National
Academy of Sciencesvol. 95, pp. 5323–5328, 1998.

[4] W. Maass, “On the complexity of networks of spiking neurons,”Advances
in Neural Information Processing, vol. 7, pp. 183–190, Cambridge: MIT
Press, 1995.

[5] W. Maass and T. Natschläger and H. Markram, “Real-time Computing
Without Stable States: a New Framework for Neural Computation Based
on Perturbations,”Neural Computation, vol. 14(11), pp. 2531–2560, 2002.

[6] Neural Microcircuits, http://www.lsm.tugraz.at/index.html.
[7] T. Natschl̈ager and W. Maass and H. Markram, “The ‘Liquid Computer’:

a Novel Strategy for Real-time Computing on Time Series”,Special
Issue on Foundations of Information Processing of TELEMATIKvol. 8(1),
pp. 39–43, 2002.

[8] S. Thorpe and A. Delorme and R. Van Rullen, “Spike-based Strategies
for Rapid Processing”Neural Networksvol. 14, pp. 715–725, 2001.


