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Abstract— Recurrently connected spiking neural networks are the standard deviation of the synaptic deldy, the mean
difficult to use and understand because of the complex non- synaptic time constant;, and the connection probability
linear dynamics of the system. Through empirical studies of between input neurons and network neurans,

b

spiking networks, we deduce several principles which are critical Thi | iki twork ithi di
to success. Network parameters such as synaptic time delays and IS paper explores spiking networks within a paradigm

time constants and the connection probabilities can be adjusted known as liquid state machines (LSMs) [5] [7] [6], described
to have a significant impact on accuracy. We show how to adjust in more detail in section Il and Ill. An artificial problem,

these parameters to fit the type of problem. described in section 1V, is developed in order to elucidate
important principles necessary for success using a spiking
neural network. Section V presents the results. Section VI then
A number of artificial neural models have been developeditraps up with some conclusions and ideas for future work.
an attempt to emulate the characteristics of the brain that allow
learning. Much research has focused on two general models, Il L1QUID STATE MACHINES
perceptrons and sigmoidal units. While these two models havd-SMs are composed of two basic parts, a liquid and a
been shown to be useful and applicable to a wide ranggadout function. To understand the basic idea behind LSMs,
of problems, recent research has revealed several reasénggine a pool of water into which various objects are dropped
theoretical and biological, that compel an investigation int@], where each object belongs to certain output class in the
a more complex representation, one that actually models 8 {So.S1,...,Sn}. As the objects plunge into the liquid,
spiking behavior of biological neurons. they perturb the surface of the liquid, resulting in complex
Unlike perceptrons and sigmoidal units, biological neurorgatterns. These patterns provide a history and describe both
communicate and convey information via electrical pulsetgmporally and spatially how the objects entered the liquid.
commonly called spikes. For instance, the speed at whichStated another way, we have a signal: 7 — R", a
muscle contracts is proportional to the rate at which neurofsiction of time, which is transformed into another signal
within the muscle produce spikes, or fire [8]. This type otith a functionl : 7 x R™ — 7 x R™ that encapsulates the
encoding is known as rate-based, signifying that the firing radi¥namics of the liquid. Then a readout function7 xR™ —
of the neuron communicates information. 7 x {0,1,..., N}, can then be trained from the transformed
The assumption of a rate-based encoding allows perceptrgi@inal [(z) to classify the inputs. Overall, the process can be
and sigmoidal units to abstract away the spiking behaviéescribed succinctly as(((z)).
of biological neurons. However, with the extra degrees of Now, instead of a pool of water, consider for a moment
freedom available to spiking neurons via a host of addition#le human brain as a liquid. Inputs enter the brain through a
parameters, they have much more flexibility and represey@riety of sources - through eyes and ears and any of the other
tational power than their rate-based cousins. Additionall§enses. These inputs are encoded via spike trains, or in other
spiking neurons have an inherent advantage when learnigrds, series of electrical impulses which form the basis of
time-varying functions since they are by definition a temporgPmmunication between neurons. These input spikes in turn
phenomenon. However, despite these apparent advantagesS@tse a cascade of spikes within the brain, producing complex
complex non-linear dynamics of recurrently connected spikifgteractions, analogous to the ripples and interference patterns
networks defies attempts at analytical study and compreh@foduced in the pool of water.
sion; as a result, no general method exists that efficiently used he liquid we use in this paper attempts to model the
the full capability of spiking neurons. complex behavior of the brain with a recurrently connected
Through empirical studies of spiking networks, we providépiking neural network, often called a neural microcircuit.
results that prove insightful, allowing more efficient use of thEormally, aspiking neural network4] consists of
representational power of spiking neurons. In particular, wee a finite setV of spiking neurons
examine four network parameters: the mean synaptic délay, « a setE C V x V of synapses

I. INTRODUCTION
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Fig. 1. Training a Liquid State Machine - First an input signal (a) is transformed into spikes trains via some encoding process (b) (black dots represent
times when a neuron spiked). The spikes then stimulate the liquid (c), which in this case is a neural microcircuit. At regular intervals, the state of the liquid
is transformed into a multi-dimensional state vector (d). From the sequence of state vectors (d), a training algorithm can be employed to classify the input
data, in this case linear regression.

» a weight w,, > 0, delayd,, > 0, and aresponse This paper explores several network parameters and their

functiony, ., : RT™ — R for each synapséu,v) € E, effect on performance. All of the parameters that we examine
« and athreshold functior®, : R+ — R for each neuron are related to the synapses between neurons. As stated before,
vevV. each synapse has an associated delay tilme, This is the

}H’ne it takes for a spike to propagate along the synapse from
OIfe neuron to the other. For all the networks we use in this
paper, all of thed,, , are drawn from a gaussian distribution.
We vary both the meani, and the standard deviatiod,, of
this distribution to understand their effects.

We examine bothl andd,, for each of the four following
different types of synapses: (1) from an excitatory neuron to an
excitatory neuronFE E, (2) from excitatory to inhibitory,F1,

For the model we use, each synapse is directional, mean
that if a synapsé& connects neuron with neurong, ¢ does
not connects to «; B can receive a spike from via &, but
¢ does not enable spikes to reachfrom 3. An excitatory
synapseis one that hasw,, > 0. An inhibitory synapse
is one that hasw,, < 0. An excitatory neuronhas only
excitatory outgoing synapses. Anhibitory neuronhas only

inhibitory outgoing synapses. All neurons we use will eith ) from inhibitory to excitatory/ E, and (4) from inhibitory to

be excitatory or inhibitory. For more information on spiking /.. . s e
networks, see [1]. The modeling software we use to simula%qehlbltory’ [1. The defaulil for each type of synapse is either

L % 1074 or 1.5 x 10~ seconds. However, unless explicitly
the spiking neural network comes from [E.S].’ where the defau&a ed that the default values are being uskedijll refer to a
network parameters are based on empirical results gathere = =

from recordings of the somatosensory cortex in rats [2] [3].%eeflr’lhgvgélelljI:y\?;jeoiosgn?spzelsé o BE = BI = 1E =

As stated before, a readout functionis trained on the  The synaptic time constant, is another parameter we in-
output of the liquid,!(x). However, since the liquid we useyestigate. The time constant is related to the response function,
is a neural microcircuit, ofterr must first be encoded as,, ., and governs how long a spike’s influence remains. For

spike trains with some functioa : 7 x R" — 7 x R" jnstance, consider the simple response function:
in order to interact with neurons of the circuit. Also, to enable —(t—tg)

the use of a wide variety of training algorithms which can Y(@t)=loxe 7 t>tg 1)

not directly use spikes, samples of the state of the liquid afgere 1, ¢ R+ is the value the synapse attains after a spike
taken and form a sequence of vectors, caliéate vectors andy, is the time of the most recent spike. The larges, the
which can then be used to train a readout function. Thignger the influence of a spike will last. Unlike the synaptic
sampling process will be denoted by 7 xR™ — {(R™)r}, delay, 7 is the same for each synapse of the same type. The
a function that transforms a signal into sequences of stafgfault value forr is either3 x 10~3 or 6 x 10~3. As with
vectors. All together, the application of an LSM to a signghe mean synaptic delay,will be the same across all synapse
z can be described by the expressiofs(I(e(x)))), where types unless the default values are specified.
o {(R™)k} — {({0,1,...,N})}, i.e. a function from  Finally, the fourth parameter we adjust is the connection
sequences of state vectors to sequences of output clasggshability, c,,..;, between the input neurons and the neural
Figure 1 displays graphically how an LSM works. microcircuit. The default value foe,,.; is 0.2 for inhibitory

In the simplified problem we study in this paper, each signakurons in the circuit and 0.3 for excitatory neurons. We scale
x belongs to a single output class, ¥, r(s(l(e(z))))r =4, these probabilities by a factére {1,2,3,4,5}. Whenk =5,
for somei € {0,1,...,N}. Thus, we simplify the readout the probabilities are above 1.0 and every input neuron forms
function to be a function that takes sequences of state vect@synapse with every network neuron.
combines them in some fashion, and outputs class memberExcept for the above listed parameters, most of the default
ship, i.e.r : {(R™)x} — {0,1,...,N}. settings of the modeling software are used. However, all
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Fig. 2. A stimulus encoded by five neurons is presented to two different circuits of size 90 neurons. The black dots represent when a particular neuron has
fired. The circuits are identical except for differing delay times and time constants. The first circuit experiences temporal stratification. The second circuit
behaves quite differently; the resultant activity from each of the input spikes blends together.

experiments have the following parameter settings in commatimulus. Thus, it would be practically impossible to recognize
Linear least-squares regression, a fairly simple algorithm lirthe entire sequence of spikes from snapshots of the circuit; the
ited in its representational power, is chosen for the traininggeural microcircuit is unable to “remember” previous inputs
of the readout function so that results can be attributed mdryecause the network parameters are not set correctly.

to the neural microcircuit and its ability to simplify the task A more desirable example is that of Figure 2(b). The same
of classification rather than to the power of the learninipput spike train is fed to a neural microcircuit, however in
algorithm. Also, all of the experiments use a network sizhis case the neural microcircuit has appropriately set network
of 90 neurons, with the topology of the network being aarameters that allow input spike activity interaction over time.
square column of dimensioB x 3 x 10 neurons. This size Thus any snapshot of the circuit could potentially contain
possesses sufficient representational capability to solve mioformation about inputs that occurred some time in the past.
of the problems we discuss, while at the same time being smallThis paper explores how to best make use of the benefits
enough to exhibit some weaknesses. Recurrent connectiohdSMs: projection of inputs into higher dimensional spaces
within the circuit have an average distance of 2 (i.e. 2 neuroasd integration of inputs over time.

apart within the3 x 3 x 10 regular grid) and are governed by
the default values fot,,, for each type of synapse. The ratio ) )
of excitatory to inhibitory neurons is 4:1. The state vectors are Datasets are constructed in the following maniértem-
composed of 90 elements, one element for each neuron in giates are created, each representing a different output class.

network. Each element is a rough approximation of the firinﬁ?Ch template is composed af input channels. The input
rate of the neuron at the time of the sample. channels are poisson-distributed spike trains, strictly monoton-

ically increasing sequenceg, t1, ..., t,, with a mean value of
IIl. A DVANTAGES OFLSMs 100 spikes per second. For all experiments, the lengths of the
One advantage of using a spiking neural network is thatgpike trains of each input channel are set to be the same value,
projects the input into a high-dimensional space, allowing tl{e which implies that each,, < {. From theseN templates,
learned readout function to be simple. Of course this advantaggussian jitter is added to the templates to form new instances
of projecting inputs into higher-dimensional spaces is comman the formt¢q + €g,t1 + €1, ..., t, + €,, Where each; is a
to many learning methods, such as the kernel of a suppotmber drawn from a gaussian distribution with zero mean and
vector machine. standard deviation of0—2 seconds. These instances are then
Another advantage of using an LSM is the ability to havdivided up into a training set and a validation set. Also, for
a memory-less readout function. Any snapshot of the statesafme experiments, random noise is inserted at the beginning
the network will contain information about both current andf the spike trains, i.ety + €g,t1 + €1, ...,t, + €, becomes
past inputs; the waves of spikes produced by input in the pagtry, ..., 7, to + €0 + 0,t1 + €1 + 9, ..., t, + €, + 9, where
will continue to propagate for some time, intermingling with-g, r1, ..., 7, is @ randomly generated sequence and the
the waves from the current input. This process will be referréeingth of that sequence. The portioy+ eg + 6,1 + €1 +
to asintegration of inputs over timéaVhen a network properly o, ..., ¢, + €, + ¢ shall be identified as th&arget pattern
integrates inputs over time, a readout function can be memory-The goal then is to train a readout function, so that
less, relying on the network to remember and represent pgaten an instance, r(s(1(n))) = c¢(n), wherec(n) returns the
and current inputs simultaneously. output class of;. The functionr combinesN linear regressive
Figure 2(a) gives an example when integration over tinmaodels,mi, mas,..., my. Eachm; is trained on the set of state
does not occur. Input spikes create clusters of activity withirectors from the training set with target valugs 1}, a 1 for
the network, all of which die out before the last spike of thetate vectors belonging to clagsand a O otherwise. Then,

IV. PROBLEM DESCRIPTION
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Fig. 3. Results from varying, , andd,. Each graph had, held constant whilel andr are varied. Color indicates accuracy.
given a sequence of state vectors for a particular instanée, Experiment 1: Parameter Exploration

{s(l(n))x}, r outputs This first experiment reveals the effect of varyiagl,,, and
k 7 on the target task. We séf = 20 and bothd and r are

arg max 2= ma(s((n));) (2) sampled at values in the ranfe001, 0.100] while d,, is sam-

i k pled at the five discrete valugs0=*,1073,1072,1071,10°}.

The length of each template is set¢e= 0.1 seconds and the
length of the noise inserted at the beginning is sed te 0.

This section presents the results of a number of experimeiiie training set size is set to 400 and the validation set to 200.
using an LSM to solve the above task. The first experimehigure 3 displays the validation results of the experiments.
varies three network parameteds,r, andd,,, to see how they ~ From Figure 3, several trends are distinctly noticeable. For
influence accuracy. The second experiment adds noise to @, varyingd, does not have a significant impact as long as
beginning of the target patterns to examine its effect. The thidd is small enough. Associated with each valijeis a set of
experiment again explores how noise affects performance, pgints inR?* consisting of a value fod, a value forr, and the
also assess how well the LSM can handle large numberscigssification accuracy achieved. Linearly interpolating from
output classes. Finally, the last three experiments try to solf@ese points, sampling at each combinatiehr),vd, 7 €
the noise problem by adding more information into the circui{0.001,0.002, ...,0.100}, produces al00 x 100 matrix of

For all experiments except 3, the state vectors are sampi@@rpolated accuracy values. The Frobenius norm is calculated

V. RESULTS

every 0.01 seconds, starting at time on the difference between each of the five resultant matrices
(one for each value of the time delay standard deviation),
0.5/ +6 + min{FE,EI,IE, I} (3) which shows quantitatively how similar they all are to one
another. Table | presents these results below. As indicated from
and ending before time the table, the values)—*, 10~3, and10~2 give accuracies that
- are very close to each other.
1.33l+ 6+ max{EE,EI,IE,II} (4) TABLE |

NORM OF THE DIFFERENCES BETWEEN RESULTS

The rationale behind these equations is to provide data on

. de [ 107771073 [ 1072 [ 10T 1
the state of the network when the target pattern is actually 104 0 28521 302 850 631
occurring. The constants 0.5 and 1.33 are an indication that 103 | 254 0| 300| 859| 63
the circuit may take a while to respond to the target pattern’s 18:? g-gg g-gg - 103 8-13 Z-gg
input spikes, and that the network may continue to represent T 631 630 S8s 4820

the pattern past the time when input spikes are being received.
Also, for all experiments except 5, the number of input Also interesting is that biologically non-realistic values for

channels is set at = 1. For each run of the algorithm, setsd performed the best. Generally speaking, the radge

of instances and neural microcircuits are uniquely generat@dt, 1.0] and 7 € [0.005,0.04] provided the best results,

within parameter constraints. Finally, each data point represpecially wheni, = 10~%,10~3,10~2. Since the simulation

sents the mean over ten trials. of the circuit is limited to a short time according to (4), such



large values forl ensure that the state of the network at tiime sample point from each instance, the end of the simulation
is almost wholly dependent on inputs around titaed. Thus, according to (4). The other two sets of trials use the sampling
in this case, the performance of the LSM depends heavily upprocedure as defined in the introduction of this section. Finally,
the circuit’s ability to project inputs into a larger dimensionathe training set size is set @) N and the validation set size
space rather than integrating inputs over time. Smaller valueslON. Figure 5 displays the results.
for d allow spikes propagating along recurrent connections toAgain, noise has a significant detrimental effect on perfor-
interfere with the current inputs. mance. However, without noise, the LSM shows surprising
B. Experiment 2: Effect of Noise robustness in its ability to handle large numbers of output
classes, especially when only one sample point is used. When
If the reason that larger values fdrresult in better per- myltiple sample points are used, performance for both noisy
formance is due to lack of interference from recurrent inputgnd non-noisy trials is worse than when only one sample point
then adding enough noise to the beginning of the signal shogd;sed. This is probably due to the simpleness of the learning

result in markedly degraded performance of the LSM. If thgigorithm and its inability to reconcile multiple state vectors
nOIse at the beg|nn|ng Of the S|gnal haS |en§ﬂ‘such that as represent|ng the same Output Class
§ > d andé§ > ¢, then circuit will first be stimulated by the

noise that later causes interference along recurrent connecti s
during the entire processing of the target pattern. Hayirgd o UeleoET
insures that interference occurs at the beginning of targ Teme E"ﬂ\ 05 st i i [
. . . . hE: 5. oy i —e— Single sample, no noise, val.
pattern processing whilé > ¢ insures that the interference ¢ osf g IE, 1| O Single sample, with noiss, trin.
. . . = . N | | e Singl le, with noise, val.
continues throughout the entire processing of the target patte 5 |~ = o % [l i e
To test this hypothesis, we repeated the same experiment™ 4, > Wl B I, ST MR
e e . . = — & -Mult samples, with noise, train.
above, limiting it tod, = 1 x 10~%, but settingd = 0.1, the . e - & -Mult, samples, with noise, val.
same length as the target pattern. Figure 5 displays the res \5‘»9_'::'"o‘.,‘u‘m;:'__z“a._E
. . e PN e,
of this experiment. e Lk
p 0 40 50 120 160 200

Noise Added, Mean Delay Standard Deviation = 1x 10

Fig. 5. Varying the Number of Output Classes: N is varied from 20 to
200 in increments of 20.

Accuracy
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D. Experiment 4: Increasing Information by Increasing Con-
nection Probability

The more information the network has about target patterns,
the more likely the training algorithm will be able to learn the
N e output classes. The first method we examine to increase the
Mean Time Constant information available to the network is by simply increasing
3 the connection probability;,,.,. With only one input channel
Fig. 4. Results from varyingl and 7, keepingd, = 10~4, and adding and with Cprob by default ranging between 0.2 and 0.3, the
noise,s = 0.1. number of network neurons that receive synapses from the

As expected, the performance of the LSM is severelpput neuron is likely less than one third. With such a low
degraded. However, the primary factor affecting performaneember of network neurons receiving input spikes, perhaps
is not d but insteadr. Smaller values for- provide the best the computational power of the network is being wasted.
accuracy in this situation, which is most likely duerts large Two sets ofd and 7 are tried: the default values and
impact on how long a neuron’s spike affects the network. If d = 0.003 and 7 = 0.004. These values are chosen since they
is large enough, a critical point is reached when activity withibehave poorly in the previous experiments with noise; here
the network continues indefinitely with just a few input spikewe desire to elucidate principles that can be used to improve
to start it. Thus, large values af have the potential to allow performance in the event that input data might contain noise.
disruptive interference from the past. Other parameter settings include the followinty, = 104,

. . 0 = 0.1, ¢ = 0.1, the training set size is 1000, and the
C. Experiment 3: LargeV and the Effect of Noise validation get is of size 200. Tﬁe results are shown in Figure
The following experiment tests the robustness of the LSW Increasing:,., does increase accuracy, but it is still not at

to large numbers of output classes but also tests how nojfe level when no noise is present.

affects performance. The parameters of the network are set ) ] ]

to values that perform well in Experiment 1, namely= E. Experiment 5: Increasing Information with More Input
0.5, 7 = 0.010, andd, = 10~*. The only variables that are Channels

modified areN, ranging from 20 to 200, andl, set to either  This experiment tests whether more input channels, and thus
0 or 0.1. Also, two sets of trials are conducted using only omeore information, increase accuracy. Each additional input
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Fig. 6. The probability of a connection between an input neuron and a Fig. 8. The target pattern length is varied from 0.1 to 1.0 seconds.
network neuron is scaled from its default value. At a scale factor of 5, the

probability of connecting a input neuron and network neuron is one. |argea values appear to work very well. Using just a single
sample point of the network, we are able to achieve good

channel is created in the same fashion as when 1. Since f hundred | it th
each channel is created randomly, the correlation between fguracy for over a huncre output classes. However, if the
’ msetance contains noise, then smalalues work the best.

channels should be fairly low, thus providing much additional
information. This experiment is identical to the previou%
experiment except for the fact thaj,.., is now kept constant

However, if there does exist noise, the task is much more
ifficult. Even with smallr values, the accuracy achieved does
not compare to the no-noise situation. Much more information

at its default value and that the number of input channels
now varies. The results are below in Figure 7. Increasing t
number of input channels has a positive effect on accuracy.

Increasing the Number of Input Channels

S required by the network to solve the task. The best way to
this is through multiple channels that contain somewhat
uncorrelated information about the target pattern. Also, longer
pattern lengths can help. Finally, a small benefit is gained by
increasing the input to network connection probability.

A scenario that this paper does not address is the case when
an instance contains multiple target patterns. Thus, instead
of random noise interfering with classification, target patterns
from different output classes cause the interference. As future

1

Accuracy
[=]
~

0.8 — work, it would be interesting to see if the results concerning
—&—Training Acc., Default . .
o —s—Validation Acc., Default noise also apply to this case.
' 5~ Training Acc., 0.003, 0.004 This paper has barely touched the surface of understanding
—e—Validation Acc., 0.003, 0.004 . . .
045 s . - . - the complex dynamics behind recurrently connected spiking
Input Ghannels neural networks. With so many parameters, it is difficult to say

with certainty that under all conditions a certain principle holds
Fig. 7. The number of input channels is varied from 1 t0 10.  trye, More work should be done to validate the conclusions
of this paper across other problems, both artificial and real.
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