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Abstract
Reinforcement learning agents that interact
in a common environment frequently affect
each others’ perceived transition and reward
distributions. This can result in convergence
of the agents to a sub-optimal equilibrium
or even to a solution that is not an equilib-
rium at all. Several modifications to the Q-
learning algorithm have been proposed which
enable agents to converge to optimal equi-
libria under specified conditions. This paper
presents the concept of target sets as an aid to
understanding why these modifications have
been successful and as a tool to assist in the
development of new modifications which are
applicable in a wider range of situations.

1. Introduction

Reinforcement learning is a sub-field of machine learn-
ing in which the agent is provided with numerical feed-
back for executing input-output pairs rather than be-
ing provided with a set of training examples and cor-
responding correct outputs. Reinforcement learning
can be advantageous because it is uneccessary to com-
pile a set of example situations and correct behaviors
ahead of time. Any goal-oriented heuristic which can
be calculated online is suitable for training the agent.

Within the field of reinforcement learning, much at-
tention has been given to the Q-learning algorithm [9].
Q-learning is attractive for experimental and analyt-
ical purposes because of its relative simplicity, its
widespread use, and its convergence guarantees [8].
Successful applications of Q-learning and related algo-
rithms to control tasks include network load balanc-
ing [6], block-pushing [7], simulated submersible vehi-
cle navigation [2], and target-following [1].

Unfortunately, straightforward applications of Q-

learning to the multiagent domain do not always yield
effective results. This may happen for two reasons.
First, the convergence guarantees of the Q-learning al-
gorithm frequently become invalid in multiagent envi-
ronments. Second, even when the Q-learners converge
properly, the combination of their final policies may
still turn out to be an undesirable system behavior.

These difficulties have motivated several modifications
of the Q-learning algorithm for multiagent environ-
ments, but a formal explanation of their causes and
how they may be reliably prevented is still lacking.
This paper moves in that direction by presenting the
concept of target sets. Target sets are used to iden-
tify three potential difficulties in multiagent reinforce-
ment learning and to show that if all three difficulties
are avoided, an optimal system behavior will result.
These three difficulties are conflict of interest, action
shadowing, and joint action prediction.

This paper then uses the presented concepts to dis-
cuss the work of several researchers on Q-learning in
multiagent environments. It is shown that each of the
modified algorithms has addressed all three of the dif-
ficulties described above.

2. Q-learning

A Q-learning agent incrementally learns a set of util-
ities, called Q-values, which represent the expected
time-discounted reward received for performing a spe-
cific action in a given state. At each time step, the
agent executes an action at and receives a reward
r(st, at), where st is the current state. The correspond-
ing Q-value is then updated according to the function

∆Q(st, at) = α[r(st, at)+γmaxa{Q(st+1, a)}−Q(st, at)]

where α ∈ [0, 1) is the learning rate and γ ∈ [0, 1) is
the discount factor.
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Under specified conditions, Q-learning is guaranteed
to converge to a set of optimal Q-values

Q∗(s, a) = r(s, a)+
∑

t

∑
st

γtp(st|st−1, at−1)r(st, π
∗(st))

where t = {1, 2, ...∞}, and p(st|st−1, at−1) is the prob-
ability of transitioning to state st given the previous
state and action. The conditions for convergence in-
clude requirements that all state-action transitions be
visited infinitely often and that the system be first-
order Markovian [8].

The agent’s goal is to learn which state-action
pairs will maximize some evaluation function. The
agent’s optimal policy can thus be described as
π∗(s) = argmaxa{eval(s, a)}. In typical Q-learning,
eval(s, a) = Q∗(s, a), but several modified Q-
learning algorithms substitute other evaluation func-
tions. Littman has proposed letting eval(s, a) be a
minimax function over the possible actions of both
agents in a two-player game [5], while Hu and Well-
man suggest an evaluation function which favors Nash
equilibria [3].

In the multiagent environment, it is sometimes use-
ful to describe potential system behaviors in terms of
the average expected reward that a particular behav-
ior will provide to a given agent. Accordingly, we de-
scribe a joint state s indexed by the individual state
si of each agent i, and a joint action a indexed by the
agents’ individual actions ai.

In multiagent environments, it is frequently assumed
that each agent can perceive the actions taken by the
other members of the system. In this case, the agent
can also employ an evaluation function based on joint
actions, eval(si,a). Even when the agents cannot per-
ceive each others’ actions, it is often useful to use
eval(si,a) to describe the preferences an agent would
have if it could perceive the joint action space.

3. Optimal Equilibria

In this paper, an optimal equilibrium is defined to be
a joint action which is (1) a Nash equilibrium, and (2)
pareto-optimal with respect to all other Nash equilib-
ria. This provides a solution concept which simultane-
ously emphasizes stability and global benefit.

4. Target Sets

The concept of a target set is best described as the set
of joint actions which maximize agent i’s payoff that
are made possible by agent i’s optimal policy. More
formally,

Definition 4.1 Let a∗i = π∗i (si) be the individually
optimal action selection for agent i in joint state s.
Then the target set Ti(s) for agent i in state s is
defined as the set of all joint actions aT such that
aT

i = a∗i and ∀a, eval(si,aT ) ≥ eval(si,a).

It should be noted that the target sets of all agents in
the system can intersect in at most one joint action
in any state, and that if the intersection of the target
sets is non-empty, its sole member can be shown to be
an optimal equilibrium.

Theorem 4.1 In a Q-learning multiagent system, a
joint action a|a∈ ∩n

i=1Ti(s) is an optimal equilibrium
for state s.

Proof 4.1 Let aT be a joint action such that aT ∈
∩n

i=1Ti(s) for some state s. Then by Definition 4.1
∀i, ∀a, eval(si,aT ) ≥ eval(si,a). If this is the case,
then aT must be a Nash equilibrium, because no agent
has incentive to change its action selection. aT must
also be a Pareto-optimal solution, because no joint ac-
tion exists which increases the evaluation function for
any agent. Thus aT must be an optimal equilibrium.

It follows that a system which guarantees a nonempty
intersection of target sets will exhibit optimal behavior
as long the each agent converges to its optimal policy.
It is therefore useful to note the types of situations
which can cause ∩n

i=1Ti(s) = ∅. We briefly consider
three such situations.

Definition 4.2 A conflict of interest occurs whenever
@a∗ such that ∀i,∀a, eval(si ,a∗) ≥ eval(si ,a).

Definition 4.3 An action shadowing problem occurs
for agent i whenever there exists some individual ac-
tion a†i such that ∀ai 6= a†i , eval(si , a

†
i ) > eval(si , ai),

but there does not exist a joint action a† (where a†i ∈
a†) such that ∀a, eval(si,a†) ≥ eval(si ,a).

Definition 4.4 A joint action prediction problem oc-
curs whenever there exist joint actions a1 , ...,an , n ≥
2, such that ∀i, ∀j eval(si ,aj ) ≥ eval(si ,a)∀a.

A conflict of interest causes an empty target set inter-
section because an agent’s target set contains only ac-
tions which maximize its evaluation function. When a
conflict of interest occurs, there is no joint action that
simultaneously maximizes the evaluation function of
all agents. Thus, there is no joint action that is simul-
taneously a member of all target sets.

Action shadowing also causes an empty target set in-
tersection, but for different reasons. Action shadowing
occurs because multiple joint actions are aliased to a
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single action selection of the agent. Thus, the indi-
vidual action with the highest Q-value may not nec-
essarily correspond to a joint action that maximizes
the agent’s joint evaluation function. If this happens,
then that agent’s target set will be empty, and if one
agent’s target set is empty, then the intersection of all
target sets must also be empty.

Unlike conflicts of interest and action shadowing, a
joint action prediction problem does not always result
in an empty target set intersection. Nevertheless, the
existence of more than one potentially optimal equilib-
rium requires that the agents somehow cooperate with
each other in selecting one of these potential equilib-
ria. If the agents fail to coordinate their actions, an
empty target set intersection will result.

It can be shown that in the absence of these three
problems, the combination of the agents’ individually
optimal policies will result in an optimal equilibrium.

Theorem 4.2 If there exists one and only one
a∗ such that ∀i, ∀a, eval(si ,a∗) ≥ eval(si ,a) and
eval(si , a∗i ) > eval(si , ai)∀ai 6= a∗i , then a∗ is an opti-
mal equilibrium.

Proof 4.2
When executing its optimal policy, each agent will se-
lect an action π∗i (si) = argmaxa{eval(si, a)}. For
each agent, this action must be a∗i , since we know that
eval(si , a∗i ) > eval(si , ai)∀ai 6= a∗i . But this means
that ∀i, a∗i ∈ Ti(s), since eval(si ,a∗) ≥ eval(si ,a∗)∀a.
Hence, a∗ ∈ ∩n

i=1Ti(si), and by Theorem 4.1 a∗ is an
optimal equilibrium.

5. Modified Q-learning Algorithms

Several researchers have proposed modifications to the
Q-learning algorithm in order to encourage optimal
system behavior. This analysis shows how some of
these algorithms address conflict of interest, the ac-
tion shadowing problem, and the joint action predic-
tion problem.

5.1. Minimax Q

Michael Littman [5] proposed a variation on Q-
learning suitable for two-player zero-sum games.
Littman’s approach, called Minimax-Q, was charac-
terized by two distinct changes:

• The agent could perceive the actions of its oppo-
nent, and maintained a table of joint Q-values.

• The agent used a minimax evaluation criteria over
the Q-values, rather than just taking a max.

When played against itself, the Minimax-Q algorithm
converged to a classic minimax solution. This solution
constituted an optimal equilibrium for the following
reasons: (1) Because all minimax solutions are also
Nash equilibria, the learned solution was a Nash equi-
librium; (2) Because all possible joint actions in a zero-
sum game are pareto-optimal, the learned solution was
pareto-optimal.

Littman’s approach addresses the conflict of interest
inherent in zero-sum games by changing the evaluation
function of the Q-learner to a minimax operator. With
this alteration, conflict of interest is no longer an issue,
as every zero-sum game has a minimax solution; hence,
a solution that maximizes the evaluation function for
both agents.

Minimax-Q addresses the action shadowing problem
by having the agents learn joint Q-values rather than
individual Q-values. This eliminates the aliasing which
causes action shadowing to begin with, and ensures
that all agents are able to distinctly identify which
individual actions might lead to optimal solutions.

The joint action prediction problem was not explic-
itly addressed in Littman’s algorithm. The relative
success of the algorithm indicates that if multiple opti-
mal equilibria exist in Littman’s soccer simulation, the
agents tend to settle on compatible policies through
trial and error.

5.2. Nash Q-learning

Hu and Wellman [3] present the concept of Nash
Q-learning, or NashQ, for general-sum games. Like
Minimax-Q, each NashQ agent maintains a table of
joint Q-values. Each agent also maintains a table of
joint Q-values for every other agent in the system, up-
dated based on the action selections and the rewards
received by the other agents.

In NashQ, Q-values are updated based on the rewards
the agent would receive if all agents maintained a Nash
equilibrium from the current state onward. This con-
stitutes a change in the agent’s evaluation function.
The algorithm is guaranteed to converge to optimal
Nash Q-values (and hence, a Nash equilibrium) given
that a unique Nash equilibrium exists in every state.

Nash Q-learning addresses conflict of interest by re-
defining the evaluation function to seek actions which
contribute to a Nash equilibrium. Since the algo-
rithm’s convergence guarantees require a unique Nash
equilibrium in every state, it follows that a mutually
preferable joint action must exist for all agents in every
state.
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Like Minimax-Q, NashQ addresses the action shadow-
ing problem by allowing the agents perceive the joint
action space and maintain joint Q-values.

Nash Q-learning addresses the joint action prediction
problem through the constraints on the convergence
proof. Since each state is constrained to contain only
one Nash equilibrium, a joint action prediction prob-
lem can never occur in the controlled case.

Hu and Wellman have applied their algorithm to less
constrained domains and have observed that NashQ
converges correctly in many of them, even without the
constraints required by the convergence proof. This
demonstrates that while a joint action prediction prob-
lem may cause an empty intersection of target sets, it
does not always do so.

5.3. Optimistic Updating

Lauer and Riedmiller [4] propose a modified Q-
learning algorithm that provably finds optimal solu-
tions for cooperative systems in deterministic environ-
ments. The algorithm is based on an optimistic up-
dating technique in which each agent assumes that the
maximum observed reward is always attainable. The
Q-value update equation becomes

Q(st, at) = max{Q(st, at), r(st, at)+γmaxa{Q(st+1, a)}}

In the event that two Q-values are equal, Lauer and
Riedmiller’s algorithm institutes a coordination mech-
anism in which the Q-value which was first updated to
the current value is taken as the agent’s policy.

This simple yet effective algorithm addresses conflict of
interest by constraining the system to be cooperative.
Because the agents share the same utility values, any
joint action that maximizes the evaluation function for
one agent maximizes it for all the others as well.

With regard to action shadowing, Lauer and Ried-
miller’s optimistic updating strategy has the same ef-
fect as learning Q-values for the entire joint action
space. This overcomes the action shadowing prob-
lem by allowing the agents to easily identify individ-
ual actions that will maximize the evaluation function.
Their approach demonstrates that the action shad-
owing problem can sometimes be addressed without
learning joint Q-values. This is advantageous because
the size of the joint action space grows exponentially
with the number of agents.

Lauer and Riedmiller’s coordination mechanism ad-
dresses the joint action prediction problem by imple-
menting a tie-breaking procedure. In the event of
multiple optimal equilibria, the agents are constrained

to select individual actions which allow the first such
equilibrium encountered to be executed.

6. Conclusion

Conflict of interest, the action shadowing problem, and
the joint action prediction problem can all result in an
empty target set intersection and consequential sub-
optimal behavior for a multiagent Q-learning system.
This paper has shown that in the absence of these three
problems, convergence to an optimal equilibrium can
be guaranteed. The paper has also shown how mod-
ifications to the Q-learning algorithm have obtained
better results by addressing each of these three issues.
The concept of target sets is therefore a useful tool
in analyzing multiagent Q-learning systems and in un-
derstanding why they behave as they do. This concept
may also help to motivate the development of further
algorithms which reliably converge to optimal equilib-
ria.
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