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Abstract

Q-learning is a reinforcement learning algo-
rithm that learns expected utilities for state-
action transitions through successive interac-
tions with the environment. The algorithm’s
simplicity as well as its convergence proper-
ties have made it a popular algorithm for
study. However, its non-parametric repre-
sentation of utilities limits its effectiveness in
environments with large amounts of percep-
tual input. For example, in multiagent sys-
tems, each agent may need to consider the ac-
tion selections of its counterparts in order to
learn effective behaviors. This creates a joint
action space which grows exponentially with
the number of agents in the system. In such
situations, the Q-learning algorithm quickly
becomes intractable. This paper presents a
new algorithm, Dynamic Joint Action Per-
ception, which addresses this problem by al-
lowing each agent to dynamically perceive
only those joint action distinctions which are
relevant to its own payoffs. The result is a
smaller joint action space and improved scal-
ability of Q-learning to systems with many
agents.

Keywords: Q-learning, Reinforcement Learn-
ing, Multiagent Systems

1. Introduction

Q-learning is a temporal differencing algorithm in
which the agent learns expected time-discounted re-
wards Q(s, a) for each state-action pair [16]. The basic
Q-learning update algorithm is

AQ = a(r(st, ar) +yargmaza{Q(sit1,a)} — Q(st, ar))

where r(s¢, a;) is a numerical reward (also called a pay-

off) received for performing action a in state s at time 1

t, 0 < a < 1is the learning rate and 0 < v < 1 is the
discount factor. Q-learning is guaranteed to converge
to the theoretically optimal Q-values with respect to
the discount factor under specified conditions [15].

This algorithm requires that an agent maintain |\S|*|A]
distinct Q-values, where |S| is the size of the state
space and |A] is the size of the action space. This rep-
resentation both slows the learning speed of Q-learning
systems with large state or action spaces and limits
the tractability of Q-learning as state- or action-space
size increases. One area where this problem arises is
in the realm of distributed problem solving and mul-
tiagent systems where many agents work together to
accomplish a common goal. Such applications gener-
ally require a strong coupling between specific agents:
the actions of one agent affect the payoffs received by
one or more of its counterparts. Hence, each agent
must take the behavior of its companions into account
when estimating Q-values. Otherwise, effective system
convergence cannot be achieved.

A common approach for applying Q-learning to mul-
tiagent systems is to allow each agent in the system
to perceive the action selections of its counterparts
[2, 4, 6]. This has proven quite effective for systems
with only a few agents. However, the size of the joint
action space to be represented grows exponentially
with the number of agents in the system. Each agent
in a system of n agents with |A| distinct actions and
|S] distinct states must store | S| |A|™ Q-values.

Some of this combinatorial explosion can be avoided
through careful planning of agent couplings. As the
number of agents in a system increases, the chance
that all agents have an equally strong effect on each
other decreases. System designers can capitalize on
this tendency by allowing agents to perceive only the
action selections of counterparts who significantly af-
fect their payoffs. In a traffic light control system for
city streets, for example, each agent might be allowed
to perceive the color of lights at nearby intersections,
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but not the color of lights across town.

Such design strategies can decrease the size of each
agent’s perceived joint action space, but they are in-
applicable in many situations for two reasons. First,
the strength and structure of agent couplings may not
be intuitively apparent at design time. Second, grad-
ual change in a real-world environment may invalidate
some agent couplings and generate new ones.

This paper presents Dynamic Joint Action Perception
(DJAP), a Q-learning system which allows each agent
to construct its own joint action space dynamically
from a set of available agent actions, thus reducing the
size of the joint action space without intervention from
the system’s designer. In the DJAP algorithm, action
selections of other agents are modeled as part of an
agent’s individual state. A tree structure is then used
to create a variable-resolution partitioning of this aug-
mented state space. New state space distinctions are
created as the agent locates percepts (actions of other
agents) which have a significant effect on its payoffs.

2. Related Work

Several researchers have demonstrated the effective-
ness of allowing agents in a multiagent system to per-
ceive the action selections of their counterparts. This
technique is frequently called joint action learning.
Littman’s Minimax-Q algorithm [6], Hu and Well-
man’s multiagent Q-learning algorithm [3], and Claus
and Boutilier’s joint action learners [2] are all examples
of this technique applied to Q-learning systems. Other
approaches for encouraging optimal behavior in mul-
tiagent reinforcement learning systems include policy
search [13], optimistic updating techniques [5], agent
modeling [14, 11], and the establishment of social con-
ventions [12, 7].

Work on state space partitioning and variable-
resolution state space representations includes McCal-
lum’s U-Tree algorithm [9] and Utile Suffix Memory al-
gorithm [8], Munos and Moore’s Parti-game algorithm
[10], and Chapman’s G-algorithm [1]. Each of these al-
gorithm selectively distinguishes only those aspects of
the state space which are useful in accomplishing the
given task.

The research presented in this paper differs from pre-
vious research in dynamic state space partitioning be-
cause it applies the partitioning concepts to a new ap-
plication: joint action learning in multiagent environ-
ments. The research extends previous research in joint
action learning by addressing the issue of scalability.

3. Implementation: the Dynamic Joint
Action Perception Algorithm

Dynamic Joint Action Perception (DJAP) is a new
algorithm designed to improve the tractability of Q-
learning in systems with large numbers of agents. The
algorithm achieves this by making three fundemental
assumptions: 1) it assumes that the agents all share
a common goal, 2) it assumes that some agents have
a greater effect on each others’ payoffs than others,
and 3) it assumes a first-order correlation between the
behavior of other agents and the observed payoff dis-
tributions.

These assumptions are, admittedly, restrictive. How-
ever, within the bounds of these assumptions Dynamic
Joint Action Perception is able to learn effective strate-
gies in environments with many interacting agents.
Improvements to the algorithm may enable a relax-
ation of these requirements.

The Dynamic Joint Action Perception algorithm uses
a decision tree to create a variable resolution represen-
tation of the joint action space. This process is similar
to that used by Andrew McCallum’s U-Tree algorithm
[9]. The primary distinction is that U-Tree uses a sta-
tistical test to determine which percepts are relevant,
while DJAP uses expected average increase in payoff.
This simplification in the DJAP algorithm makes it
less resource intensive.

3.1. DJAP Tree Structure

In the DJAP algorithm, action selections of other
agents are modeled as potential percepts which may
be used when determining the agent’s individual state.
The DJAP algorithm begins execution with a tree con-
sisting of a single leaf node. This leaf node represents
a single state of the DJAP agent in which the actions
of other agents are ignored. The leaf node contains
a set of Q-values representing the expected utility of
executing each possible action given the current state.

The leaf node contains a set of child fringe nodes in-
dexed by the set of unused percepts (i.e. the action
selections of other agents in the system). Each fringe
node contains a set of joint Q-values which represent
the expected utilities of each action selection given the
current state (as indicated by the parent leaf node) and
by the observed value of the unused percept to which
the fringe node corresponds. An example of this struc-
ture for two unused percepts is shown in Figure 1.

The agent is allowed to interact with the environment
until each fringe node Q-value has been updated ap-
proximately k times, where k is a user-defined param-
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Figure 1. Structure of leaf and fringe nodes in the Dynamic
Joint Action Perception Algorithm. Leaves expand along
the unused percept which offers the greatest average in-
crease in reward for the agent.

eter. (For the experiments documented in this paper,
a value of 50 was used for k.) At that point, one of the
unused percepts is selected as the basis for an expan-
sion of the tree. The selection criterion is based on the
increase in expected reward obtainable by the agent if
the unused percept in question were incorporated as
part of the agent’s state.

For example, in Figure 1, the agent could increase its
average expected reward from 1 to 2 if it were to incor-
porate unused percept 1 as part of its internal state,
because for each possible percept value, there is an
action option for the agent which provides a reward
of 2. Unused percept 2, in contrast, does not allow
an increase in expected reward. Even when the agent
can perceive the values of unused percept 2, it can ob-
tain a reward of 2 only approximately 1/3 of the time,
regardless of its action selections. Thus, in this ex-
ample, the leaf node would be expanded along unused
percept 1.

When a leaf node is expanded, it is replaced by a
branch node. Each branch node has one child for each
possible value of the unused percept which was selected
for expansion. Each newly created branch node con-
tains a set of child leaf nodes. The Q-values of these
leaf nodes are taken from the corresponding elements
in the Q-value table of the fringe node for the per-
cept along which the tree was expanded. Each newly-
created leaf node generates a set of fringe nodes based
on all of the remaining unused percepts. The initial
Q-values for these fringe nodes are generalized from
the leaf node Q-values: fringe node Q-values are ini-
tialized based on the Q-value for each action selec-

tion, regardless of the value of unused percept which
the fringe node represents. Fringe node Q-value dis-
tinctions based on the percept values will be learned
through further interactions with the environment.

Leaf node expansion continues until some user-defined
stopping criterion is reached. Examples of potential
stopping criteria include a minimum threshold on the
increase in expected reward required to qualify a per-
cept for expansion, an upper bound on the depth of
the tree, or a limit on the number of nodes in the tree.
The version of DJAP used for this paper implements
no stopping criterion at all. The tree is continually ex-
panded throughout the training period. Because pre-
viously learned Q-values are generalized to newly cre-
ated fringe nodes, overexpansion is not deterimental to
system performance in this case, although it does have
a negative impact on resource usage and adaptability
to subsequent changes in the environment.

In summary, each branch of the decision tree repre-
sents an available percept (i.e. the action selections of
another agent). Each branch node has one child for
each possible value of the percept in question. Each
leaf node of the tree represents a state of the DJAP
agent, with each state corresponding to a specific com-
bination of actions of other agents. Each leaf node also
maintains a set of fringe nodes, with one fringe node
for every available percept which has not been used
in that section of the tree. Leaf nodes are expanded
along the unused percept which offers the greatest po-
tential increase in average reward. Expansion of the
tree continues until a user-defined stopping criterion is
reached.

3.2. Learning Rate

A critical factor for any Q-learning algorithm is the
learning rate used. In the DJAP algorithm, the objec-
tive is for fringe node Q-values to converge to nearly-
optimal Q-values before expansion of the parent leaf
node occurs. Learning rates are therefore dependent
on the user-defined value k, the average number of
updates received by each fringe node Q-value before
expansion occurs.

In the current implementation of the DJAP algorithm,
each leaf node and each fringe node maintains individ-
ual learning rates for each Q-value. These learning
rates are intialized to 0.1 for fringe Q-values. Newly-
created leaf nodes “inherit” the final learning rates of
the fringe nodes from which they are created. Nor-
mally, the inherited learning rate is approximately 0.01
(The root leaf is an exception. It uses an initialization
value of 0.1). The learning rate of each Q-value is
decayed by a factor of 3 each time the Q-value is up-
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dated. The objective is to ensure that the learning
rate has decreased to a target value of 0.01 for fringe
nodes and 0.001 for leaf nodes by the time k updates
per fringe node Q-value have occured.

For fringe nodes, the value of § is determined by the
equation f = 1/k % In(0.01/0.1). For leaf nodes, the
value of § is determined by 8 = 1/kp % In(0.001/a),
where p is the average number of possible percept val-
ues per fringe node and a is the average learning rate
of the leaf node’s current Q-values. (Recall that when
a new leaf node is created, it inherits the Q-values and
current learning rates of the fringe node which was se-
lected for expansion.) For the root leaf node, a = 0.1.

3.3. Determining the Optimal Policy

When selecting actions for execution once the learning
phase is complete, the DJAP algorithm encounters a
problem. The state space of the agent is partially de-
fined in terms of the action selections of other agents.
But these action selections cannot be known until after
the agent has acted. How can the agent know which
action to perform if it does not know what state it is
in?

To address this problem, the algorithm uses an op-
timistic assumption [5]. The agent simply assumes
that all other agents will act to maximize its reward.
It therefore selects the action which will permit the
agent’s most-preferred joint action to be executed. As-
suming that all other agents have learned to perceive
the same preferred joint action, and that the optimistic
assumption holds, the system will exhibit optimal be-
havior.

4. Test Problem: Multiagent
Penny-Matching

The DJAP algorithm was tested on a task structure
which is reminiscent of a classic multiagent coordina-
tion problem: the matching pennies game.

In the matching pennies game, two agents are asked to
pick a side of a penny: heads or tails. If both agents
choose the same side, then they receive a payoff of 1. If
they choose different sides, they receive a payoff of -1.
The objective is for the agents to learn to coordinate
their actions to obtain optimal payoff.

The implemented version of the matching pennies
game differs from the classic example in several ways.

Group Size: The game is played in groups of n
agents. Fach group of agents tries to coordinate the
actions of all group members.

Ah/Bh Ah/Bt At/Bh At/Bt
Cn/Dp | (1,1,1,1)  (-2,0,-2,-2)  (0,2,-2,-2) (0, 0,-2,-2)
Cr/Di | (-2,-2,-2,0)  (-2,0,-2,0)  (0,2,-2,0) (0, 0,-2, 0)
C:/Dp | (-2,-2,0,-2)  (-2,0,0,-2)  (0,2,0,-2) (0,0, 0,-2)
Cy /Dy (-2,-2, 0, 0) (-2, 0, 0, 0) (0,-2, 0, 0) (0, 0, 0, 0)

Figure 2. Payoff matrix for four agents playing a variant
of the matching pennies game. Grid values represent the
payoffs for agents A, B, C, and D, respectively.

Multiple Groups: The playing environment consists
of m groups of n agents playing the matching pennies
game simultaneously. Agents are given no information
about the size or number of the playing groups, nor do
they know which other agents are in their groups.

Nondeterminism: With 5% probability on every
round, someone bumps the virtual playing table and
all pennies are flipped to random sides. Thus the
agents’ rewards are not always correlated with their
action selections.

Reward Structure: The agents are not only required
to coordinate their actions by selecting a specific penny
side, but they must do so in the face of a temptation
to “defect”. If all agents pick heads, then all agents
receive a reward of 1. However, if one or more agents
choose tails, then each agent that selected heads re-
ceives a reward of —2 and each agent that selected
tails receives a reward of 0.

An example payoff matrix of this reward structure for
a group size of four is shown in Figure 2. In general,
this reward structure is not learnable by reinforcement
learning agents unless they are able to see the action
selections of their counterparts.

The penny-matching environment shares many char-
acteristics with more situated problems such as robot
soccer, formation flying, and rendezvous tasks. Each
agent is a member of a much larger global system and
must learn to coordinate its actions with the actions
of some — but not all — of the other agents in the sys-
tem in order to achieve desirable results. The agent
does not know in advance which members of the sys-
tem will have a significant effect on its rewards. This
subset must be learned.

5. Results

The Dynamic Joint Action Perception algorithm was
tested in an environment consisting of 32 agents with
4 agents per group. This creates a system joint action
space of 232 distinct action combinations.

Three types of Q-learning agents were compared in this
environment: DJAP agents, more traditional joint ac-
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Relative Performance of DJAP, JAL, and IL Agents in the Matching Pennies Game
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Figure 3. Performance of DJAP, JAL, and IL agents on the
matching pennies game. Average of 10 trials.

tion learning (JAL) agents, and independently learn-
ing (IL) agents. The DJAP agents use the Dynamic
Joint Action Perception algorithm described in this
paper to learn a variable-resolution joint action space.
The JAL agents use a hand-designed joint action
space: each agent was allowed to see the action se-
lections of the three other agents in its playing group,
creating a total of 2% perceived joint actions and 2%
Q-values. The independently learning agents execute
a normal Q-learning algorithm, without regard for the
behavior (or even the existence) of the other agents in
the system.

During the learning period, each agent executed the
action with the highest Q-value (or the action which
enabled the maximal joint action, in the case of DJAP
and JAL agents) with 80% probability. A random ac-
tion selection was executed with 20% probability.

Figure 3 shows the results for each of these algorithms
in the matching pennies environment. As one might
expect, the JAL agents learn the task most quickly, as
they do not have to spend any time learning which per-
cepts are relevant to their rewards. The DJAP agents
also learn surprisingly quickly. Their overall perfor-
mance is slightly impaired, however, because the al-
gorithm is not guaranteed to split along the correct
percepts. Thus, although most agents learn optimal
policies, some playing groups do not learn to obtain
optimal rewards. Additional training time can help
to improve performance, but because each split in the
DJAP tree increases the total number of states, an in-
correct split early in training may take a very long time
to overcome, even if the correct split is taken later on.

Figure 4 shows the number of leaf nodes created by the
DJAP agents as a function of the number of training
iterations. Analysis of this graph presents a surprising

Number of Leaf Nodes Created by the DJAP Algorithm
T T

T
DJAP Tree —

Average Leaf Nodes per Agent

.
400 0 800 1000
Training Iterations

Figure 4. Number of leaf nodes created per agent by the
DJAP algorithm when learning the matching pennies
game. Average of 10 trials.

result. At 200 interactions, the point at which DJAP
cumulative reward jumps to 68 in Figure 3, the DJAP
agents have only two leaf nodes each: they are only
perceiving the actions of one other agent. This is less
information than one would expect the agents to be
able to learn an efficient policy with. However, the
probabilistic exploration algorithm used by the agents
allows them to learn the task with less information
than they would require if completely random explo-
ration were used. This result is significant because it
demonstrates that even in simple tasks, the DJAP al-
gorithm can achieve close to the same performance as
a hand-designed algorithm, but with fewer state dis-
tinctions.

One difficulty that arose with the DJAP algorithm
during testing is its sensitivity to the exploration strat-
egy used by the agents. In many cases, the 80%-20%
exploration strategy used to generate Figure 3 was
effective. In other cases, however, particularly when
the number of agents interacting in the environment
was small, this exploration strategy failed to produce
a desirable policy. A completely random exploration
strategy was similarly irregular in effectiveness. This
sensitivity to the exploration pattern used represents
a significant area for future research.

6. Conclusion

The Dynamic Joint Action Perception (DJAP) algo-
rithm allows Q-learning agents to dynamically create
joint action spaces in environments with large num-
bers of interacting agents. This is of value because
hand-coding agent couplings for joint action learning
systems is often impractical. The empirical results pre-
sented in this paper indicate that, at least for some



Proceedings of the International Conference on Machine Learning and Applications, pp. 73-78, 2003

problems, DJAP agents can learn successful policies
with a relatively small joint action space. In some
cases, DJAP can achieve reasonable performance with
a smaller joint action space than that used by a hand-
coded set of joint action learners.

The DJAP algorithm offers several potential avenues
for future research. The sensitivity of the DJAP algo-
rithm to the exploration strategies used by the agents
has already been mentioned. A better understanding
of this sensitivity and the means by which it may be
predicted or avoided would be desirable. Another av-
enue for future research involves the stopping criterion
for leaf node expansion. A comparison of various stop-
ping criteria and their relative advantages and disad-
vantages would be of significant value. The possibility
of pruning to eliminate unnecessary state space dis-
tinctions and reduce tree size should be investigated,
as should methods of seeking higher-order correlations
between unused percepts and observed rewards. Fi-
nally, the DJAP algorithm should be applied to a
complex, real-world problem to determine whether the
DJAP advantages observed in the matching pennies
game extend to less controlled environments.
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