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Abstract— The paper examines support vector machines for 
regression problem. Analysis of different grid types for 
selection of SVM parameters is conducted. Experimental 
results obtained on the basis of applying nested grids are 
presented, and efficiency of regression problem solution 
with various support vector machine parameters values is 
investigated. 

I. INTRODUCTION 
Support vector machines (SVM) [1] are one of the most 

promising approaches based on the learning for 
regression. In the formulation of SVM the model includes 
some hyper-parameters such as the kernel parameter and 
the regularization parameter that control the generalization 
performance of SVM. If one is using arbitrary SVM 
parameters the performance of SVM could be vary in a 
wide range. Finding the hyper-parameters with a good 
generalization performance is crucial for the successful 
application of SVM. 

There are different methods of SVM parameters 
selection but none of them is universal. In each case one 
has to decide which method of parameters selection he 
wants to use. In this article we will compare methods of 
parameters selection which are based on a grid search 
method and heuristic approach. 

II. SUPPORT VECTOR MACHINES 
The aim of regression problem is to construct unknown 

function in equation 

 ( )i i iy r x e= + , 

where d
ix X R∈ ⊆  are sample points, iy Y R∈ ⊆  is a 

response observed at ix , ie  is error. Function estimation 
is based on the training data 
set 1 1( , ), , ( , )n nx y x y X Y∈ ×… . 

In support vector machines, the nonlinear regression 
problem in the input space X is considered as a linear one 

( ) ( )Tf x w x bφ= +  in feature space F. This feature space 
F is induced by the nonlinear mapping : ( )x xφ φ→ . 
SVM regression is formulated as minimization of the 
following functional 
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As a loss function the ε -insensitive loss function is 
used [3]. In the functional the first term 21

2 w  requires 
the function to be as flat as possible, and the second term 
penalizes any deviations larger than the ε  for all training 
data. Positive constant C is a regularization parameter. 
This optimization formulation can be transformed into the 
dual problem [3], and its solution is given by 
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i i i
i

f x K x x bα α== − +∑ , 

where the dual variables are subject to constraints 
*0 ,i i Cα α≤ ≤  and the kernel function ( , )K ⋅ ⋅  is a 

symmetric function satisfying Mercer’s conditions [3]. 
The sample points that appear with non-zero coefficients 

iα  are called support vectors. The nonlinear mapping φ  
is usually implicitly defined via a kernel function 

( , ) ( ) ( )TK x z x zφ φ= .  
It is well known that SVM estimation accuracy depends 

on a good setting of hyperparameters C, ε  and the kernel 
parameters. The problem of optimal parameter selection is 
very complicated because SVM model complexity 
depends on all three parameters. In this paper we focus on 
the choice of ε  and kernel parameterσ . 

In the widely used kernels, RBF kernels are very 
popular for their universal approximations. We restrict 
ourselves to such a class of translation invariant kernels 

( , ) ( / )K x z K x z σ= − . The parameter σ  rescales the 
input data and determines the kernel capacity. In our 
experiments we use Gaussian RBF kernel 

2 2( , ) exp( / 2 )K x z x z σ= − − . 

For regression model quality estimation we use mean 

square error 1
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MSE f x r x== −∑ .  
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III. EXPERIMENTAL RESULTS 
To compare different methods for SVM parameters 

selection we used functions r1(x) = sin(|x|) / |x|, 
r2(x) = sin(0.25 x2), r3(x) = exp(-x2). We generated 
training set of size 100 by an additive noise process 
yi = r(xi) + ei, where the inputs xi were uniformly sampled 
from the domain [-10,10] and the noise ei had Gaussian 
distribution with zero mean and the dispersion of 10% of 
the source signal power r(x). Using generated data we 
constructed regression model using SVM. 

At first we investigated the influence of kernel 
parameter σ  for the model function r1(x). Parameter ε  
was fixed and equals to 0.1. When the value of the 
parameter σ  was small we constructed highly oscillated 
function shown in fig. 1. The value of MSE in this case 
was 0.059 and the number of support vectors was 45. 

 

Fig. 1. SVM regression with 0.5σ = . 

Using bigger value of the parameter 2.0σ =  we had 
the model with almost the same approximation quality but 
the function had better degree of smoothness. This is 
shown in fig. 2. The value of MSE in this case was 0.040 
and the number of support vectors was 40. Thus we not 
only had lower MSE value but also lower regression 
model complexity. 

 

Fig. 2. SVM regression with 0.5σ = . 

The influence of parameter ε  is shown in fig. 3, 4. In 
both cases the value of the parameter σ  was fixed to 2.0.  

 

Fig. 3. SVM regression with 0.05ε = . 

 

Fig. 4. SVM regression with 0.2ε = . 

Values of MSE for both cases were 0.037, 0.064 for fig. 
3 and 4 respectively. But the number of support vectors in 
second case decreased dramatically to 9 support vectors 
from 61 in the first case. Thus, when we increasing the 
value of ε  we decrease the number of support vectors and 
usually increase the value of MSE. In general case one 
needs to find a compromise between model complexity 
and approximation quality of the model because simple 
model have poor descriptive properties to model even 
training data, but complex model have good 
approximation abilities on training data and bad one on 
testing data. So we will have the case of overtraining. 

Dependence of MSE from the both parameters 
simultaneously is shown in fig. 5. 
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Fig. 5. SVM performance with different values of σ  and ε . 

Because of complex non-unimodal dependency of MSE 
from parameters σ  and ε  we used a grid search method 
to determine the optimal values of these parameters. We 
analyzed simple grids with different step size and nested 
grids. We have also used heuristic approach described 
in [2]. For heuristic approach parameters were set to 

ln0.5 (max( ) min( )), 3 n
nx x sσ ε= ⋅ − = , where 
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s y y− == −∑ . It is worth mentioning that this 

approach has no theoretical justification and does not use 
any prior knowledge about training data. But according to 
[2] heuristic approach gives good estimation of parameters 
in most cases.  

Rages of parameters values were selected according 
to [4]. The range of parameter σ  was set to 

3[10 / ;1.9 / ]ρ ρ− , where ρ  is minimal distance between 
two nearest elements of training data.  The range of 
parameter ε  was between zero and the maximum distance 
between any of two elements of training data. Since the 
ranges were very wide we used logarithmical scale. 

For parameters selection we used uniform grids of the 
sizes 5 × 5 (25 mesh points), 10 × 10 (100 mesh points), 
15 × 15 (225 mesh points), 20 × 20 (400 mesh points). We 
have also used nested grids. For nested grids the outer grid 
had the size 5 × 5. On this grid was searched for the 
minimal value of the model quality criterion and around 
this value we constructed the inner grid with the size 5 × 
5. The step of this inner grid was five times smaller the 
step of outer grid. We have also used situational 
optimization by each of two parameters and construction 
of the grid around heuristically selected parameters. 

In practice, we do not know the function ( )r x , so we 
can not calculate the value of MSE. For estimation of 
regression model quality we used 10-fold cross-validation 
criterion. Training data were spitted randomly for 10 
subsets of equal size, each subset was sequentially 
discarded and trains the classifier 10 times, each time 
leaving out one of the subsets from training, but using the 
omitted subset to compute the prediction errors. For 
overall performance we calculated MSE value to see the 
real quality of regression model. Experimental results for 
different types of the grids are shown in Table I. In this 
table the number of cross-validations CV is a characteristic 
of computational complexity, EMSE is the value of cross-
validation criterion. 

TABLE I.  
EXPERIMENTAL RESULTS FOR DIFFERENT PARAMETERS SEARCH 

METHODS 

Method CV Function EMSE MSE 

r1(x) 0.01164377 0.09647524 
r2(x) 0.01468316 0.08950651 Grid 5 × 5 25 
r3(x) 0.01227716 0.09042292 
r1(x) 0.01129492 0.09548682 
r2(x) 0.01361366 0.09193546 Grid 10 × 10 100 
r3(x) 0.01165975 0.08769644 
r1(x) 0.01120984 0.09550864 
r2(x) 0.01327032 0.09118706 Grid 15 × 15 225 
r3(x) 0.01168978 0.08677882 
r1(x) 0.01119106 0.09563895 
r2(x) 0.01317500 0.09094200 Grid 20 × 20 400 
r3(x) 0.01165251 0.08678891 
r1(x) 0.01141012 0.09558591 
r2(x) 0.01310579 0.09081617 Nested grid 50 
r3(x) 0.01193152 0.08577250 
r1(x) 0.02504965 0.09469944 
r2(x) 0.06647435 0.49331670 

Heuristic 
approach – 

r3(x) 0.01766664 0.10328257 
r1(x) 0.01142714 0.09613542 
r2(x) 0.01387672 0.09087674 Sequential 

optimization 40 
r3(x) 0.01216794 0.08956741 

r1(x) 
0.01125791 0.09518566 

r2(x) 0.06765008 0.21862768 

Grid 5 × 5 
around 

heuristically 
selected 

parameters 

25 

r3(x) 0.01198660 0.08849944 

 
Based on these experimental results we can conclude 

that for examined examples decrease of grid step does not 
substantially increase model quality. Thus regarding 
computational complexity it could be recommended to use 
bigger step size of the grid while searching for optimal 
parameters. It is worth mentioning that when we use 
heuristically selected parameters we construct smooth 
functions but not always they have good approximation 
abilities. Using these experimental results we suggest to 
use nested grids and to start constructing grid around 
heuristically selected parameters. 

IV. SUMMARY 
In this article we examined different methods for 

parameter selection using grids. Also we compared grid 
approach with heuristic approach. Experimental results 
showed that nested grids approach have advantages in 
computational complexity. We have also suggested the 
usage of heuristic approach for selecting starting values 
for nested grids. 
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