
Autonomous Evolution of Topographic Regularities in Artificial

Neural Networks

Accepted to appear in Neural Computation journal, Cambridge, MA: MIT Press, 2010

Jason Gauci (jgauci@eecs.ucf.edu)
Kenneth O. Stanley (kstanley@eecs.ucf.edu)

School of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA
Keywords: Neuroevolution, evolutionary computation, indirect encoding, topographic maps

Abstract

Looking to nature as inspiration, for at least the last 25 years researchers in the field of neuroevolution (NE)

have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs).

Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, per-

haps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this

paper shows that when geometry is introduced to evolved ANNs through the Hypercube-based NeuroEvo-

lution of Augmenting Topologies (HyperNEAT) algorithm, they begin to acquire characteristics that indeed

are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in

space (i.e. if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this

paper show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to

evolve such maps is shown in this paper to provide an important advantage in generalization. In fact, the

evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the

connectivity patterns of more general players is significantly more smooth and contiguous than less general

ones. Thus, the results in this paper reveal a correlation between generality and smoothness in connectivity

patterns. This result hints at the intriguing possibility that, as NE matures as a field, its algorithms can evolve

ANNs of increasing relevance to those who study neural computation in general.

1

http://www.cs.ucf.edu/~jgauci
mailto:jgauci@eecs.ucf.edu
http://www.cs.ucd.edu/~kstanley
mailto:kstanley@eecs.ucf.edu
http://www.eecs.ucf.edu/
http://www.ucf.edu/

1 Introduction

For at least the last 25 years (32, 40, 49), a unique and growing research community has focused on the

possibility that effective artificial neural networks (ANNs) can be evolved through evolutionary algorithms

(4, 28, 32, 51, 79, 86, 93, 96). This field of research, called neuroevolution (NE), draws inspiration from

nature, wherein brains of astronomical complexity are indeed the product of an evolutionary process. While

NE is recognized within the evolutionary computation community, it remains little known within the broader

neural network and neural computation communities. Perhaps one reason for this lack of engagement is

that, while considerable research in neural computation has focused on modelling aspects of real brains

(3, 7, 62, 63, 87), NE algorithms generally do not produce ANNs reminiscent of biological brains. While

producing biologically plausible ANNs is a high threshold for success, the suggestive analogy between NE

and the evolution of brains in nature invites such ambitious expectations. In fact, it is fair to ask why an

artificial evolutionary process should not produce structures reminiscent of those seen in nature. While this

question is challenging, it raises the possibility that if we can identify the missing ingredients, it might

be possible to incorporate them into future algorithms, thereby dramatically opening up the possibilities

encompassed by NE.

In this spirit, this paper takes a step towards artificially evolving more biologically plausible ANNs. Like

many papers on NE (36, 80, 92), it includes a performance comparison that demonstrates the advantage of

its approach, in this case in the domain of checkers. However, more importantly, the paper concludes with

a new kind of analysis that has so far been impossible with evolved ANNs. In the analysis, connectivity

patterns of evolved ANNs are shown to exhibit topographic maps. Furthermore, observable geometric

properties of these maps are shown to correlate to greater generalization. Thus for the first time macro-level

qualitative properties of evolved ANN connectivity patterns are analyzed similarly to networks engineered

as cortical simulations (6, 7, 15, 87) or even real cortical layers (45, 46, 91). This analysis becomes possible

because of the unique properties of the NE algorithm studied in this paper.

Before previewing the details of this algorithm, let us return to the question of the missing ingredient:

Why have past NE algorithms not produced ANNs that inspired the attention of neuroscientists or neural

computation researchers? For a significant class of NE algorithms called direct encodings (35, 69, 78, 93), a

key reason for the lack of engagement is that they lack geometry. That is, while such evolved ANNs contain

an aggregate of nodes and connections, the nodes do not typically exist at defined locations in space, which

means that their geometry is in effect arbitrary. There is thus no concept of locality or long versus short

connections; there is no concept of symmetry or topographic regularity. Yet geometry is a critical facet of

biological brains that is responsible for a preponderance of insight into their workings. Everything from

MRI studies of salient brain regions for important cognitive tasks (71) to topographic maps (6, 75), such

as somatotopic, visual, and auditory, depends upon our ability to observe neural geometry. Without such

geometry, no such structures can be discerned or understood.

In fact, the problem is deeper than geometry being unobservable. The problem is that in direct encodings

there is generally no means to represent ANN structure as a function of geometry and therefore no oppor-

2

tunity to exploit it at all. That is, a representation that simply evolves the weight of a connection between

neurons A and B has no way to associate the weight of the connection with the relative locations of A and

B when they have no location. Yet in any topographic map, the connectivity heavily depends upon the geo-

metric relationships among nodes in the map and nodes projecting afferent connections into the map. Thus

this lack of geometric structure has inadvertently handicapped NE from evolving brain-like structures. A

NE method that endows evolved ANNs with an awareness of geometry might allow the ANNs to represent

more biologically-plausible structures.

In response to the limitations of direct encodings, other researchers have evolved indirectly encoded

ANNs (8, 10, 11, 22, 39, 41, 43, 48, 54, 61, 81), which means that they evolve a compressed description

of the ANN rather than the ANN itself. Such encodings can potentially describe geometric relationships

within the ANN.

Building on this idea, this paper explores the implications of evolving networks that are aware of their

geometry through the Hypercube-Based NeuroEvolution of Augmenting Topologies (HyperNEAT) method,

which is uniquely sensitive to geometry. In HyperNEAT, the indirect encoding is called a compositional pat-

tern producing network (CPPN), which has the special property that it describes network connectivity as a

function of neural geometry. The CPPN encoding is unique even among indirect encodings in that it explic-

itly assigns positional coordinates within the geometry to each node in the ANN and this (x, y) coordinate

of each node in the ANN is literally input into the CPPN. That way, encoded ANNs exhibit observable geo-

metric regularities. The CPPN is able to encode an entire ANN by specifying, for any two neurons situated

at locations A and B respectively, the connection weight wAB between them. Thus, neurons in HyperNEAT

exist at defined coordinates in Euclidean space, enabling the geometric encoding of connectivity. When

geometry is important to the problem, aligning the locations of neurons with the inherent geometry of the

problem domain provides HyperNEAT a significant advantage over direct encodings, which have to learn

the problem geometry one connection at a time.

The game of checkers is chosen as the domain for experimentation because checkers is intuitively geo-

metric. The rules of checkers are relatively succinct, yet the strategy in checkers is potentially complex. A

nice property of checkers is that the rules of movement for a piece do not change depending on the location

of that piece on the board. Therefore, a representation that can extrapolate its strategies across the board to

different locations gains a significant advantage over an approach that must learn the same concept for each

square on the board individually.

To establish the role of geometry in effective learning, this paper examines the relative performance of

HyperNEAT and another NE algorithm that learns from a predetermined network geometry intended to suit

checkers. Both methods are compared to variants of a traditional approach that is completely unaware of

geometry. ANNs are trained to defeat a fixed heuristic opponent. Thus the goal in this work is not to produce

the best possible checkers player, but to analyze the properties of winning solutions by examining how they

exploit geometry and the implications of such exploitation.

In particular, a major focus is the relationship between the geometry of solution ANNs and general

performance against variants of the original heuristic that the winner was not trained against. To understand

3

this relationship between geometry and generality, evolved receptive fields and influence maps (45, 46) are

studied within the connectivities of general and less general players evolved by HyperNEAT. In addition,

several checkers position evaluations are explored, demonstrating how subtle changes in the checkers board

position result in changes in activation within different layers of the encoded ANN. This analysis reveals a

surprising and novel insight: The networks that generalize most effectively display clear, smooth geometries

in their connectivity patterns. In effect, they are smooth topographic maps optimized to evaluate checker

boards. In contrast, less general networks (which still defeat the heuristic) exhibit jagged and irregular

connectivity. The correlation between smoothness and generality is only possible to expose through a NE

algorithm that evolves networks with encoded geometry.

This correlation raises an intriguing insight about general behavior and its relation to geometry: A NE

algorithm that does not encode structure as a function of geometry cannot be expected to exploit the same

kinds of topographic correlations that are exploited by an indirect encoding and therefore cannot generalize

in the same way.

Thus a major result is that it is now possible to artificially evolve ANNs with topographic maps, moving

them closer to biological plausibility, and potential allowing artificially evolved specimens to begin to yield

insights about neural function that previously were only the province of real biological study.

The paper begins with an overview of neuroevolution and the HyperNEAT method. Section 3 outlines

the specific approach designed to learn regularities in checkers through HyperNEAT. The experiment is set

up in Section 4. Section 5 presents performance results as well as an analysis of general and less general

networks. This analysis is discussed in Section 6, which also contains an outline of future work suggested

by the main insights in the paper.

2 Background

This section first reviews prior work in NE. Then, the NEAT and HyperNEAT methods, which enable ANNs

with geometry to evolve, are explained.

2.1 Neuroevolution

Neuroevolution (NE) is a field within evolutionary computation that focuses on training neural networks

through evolutionary algorithms (28, 96). This approach applies the concepts of fitness, generations, popu-

lations, mutation, and sometimes crossover from evolutionary algorithms to evolve ANNs. It also benefits

from the neural model, which is based on biology. In NE, the genotype represents an individual in the

evolutionary algorithm that is transformed into an ANN during evaluation. After evaluation, the genotype

receives a fitness that decides the parents of the next generation of individuals. NE can evolve any kind

of ANN, including recurrent and adaptive networks (27, 70, 74). The way that the ANN is described by a

genotype is called its encoding. This paper focuses on a specialized encoding that leverages geometry to

create regular ANNs.

4

In early NE research, humans dictated the topology and encoding of evolved ANNs (9, 35, 49, 65, 76, 93,

94). While this approach allows human experts to design the topology and encoding with domain-specific

optimizations, it is also limited by fixed topology. In contrast, evolving structure in addition to connection

weights removes the burden of deciding the network topology from humans and places it on the learning

algorithm (4, 11, 30, 31, 38, 43, 58, 64, 69, 73, 79, 97).

The first methods to evolve both network structure and connection weights encoded networks directly,

which means that a single gene in the genotype maps to a single connection in the network (4, 69, 79,

96, 97). While this approach is straightforward, the problem is that it requires learning each connection

weight individually. As a result, it is impossible to learn a regular pattern of connectivity without learning

each connection in the pattern on its own. Again, human engineering is one approach to overcoming this

limitation. For example, Togelius and Lucas (89) introduced a symmetric ANN to power a symmetric robot,

which reduced the amount of evaluations required by a factor of eight. Human engineering can capture

patterns and regularities in the input and reduce them to a vector of numbers. However, ideally, evolution

should be able to capture patterns and regularities on its own.

Indirect encodings give evolution the opportunity to explore patterns and regularities by encoding the

genotype as a description that maps indirectly to the target structure (11, 22, 39, 42, 51, 54, 77, 81). That

way, in neuroevolution, the genotype can be much smaller than the ANN, which results in fewer variables

to optimize for the evolutionary algorithm. In fact, the CPPNs in HyperNEAT, described later in Section

2.3, are a geometric indirect encoding that draws inspiration from biology, capable of finding and exploiting

geometric regularities in the problem domain.

However, it is possible to try to build some geometric grouping into the connectivity structure of an

ANN even with a direct encoding. For example, an interesting attempt to integrate geometry into NE is

Blondie24, an evolved checkers-playing ANN (13) that was able to reach expert-level play on a popular In-

ternet checkers server and against an expert-level version of the program Chinook (29). A similar approach

is taken in Blondie25, a chess program that evolved neural networks to assist in evaluating the chess board

(33). The main idea in Blondie24 is that the ANN topology can be better engineered to respect the regular-

ities inherent in the game. In particular, the weights of an ANN topology engineered by hand are evolved.

Every subsquare (i.e. set of positions arranged in a square shape) of the board is input to a separate hidden

node responsible for only that subsquare (figure 1). Connections are specified from the actual board inputs

to their respective subsquares, and also between the inputs and the final output node. The main idea in this

engineered structure is that independent local relationships within each subsquare can be learned separately

and then combined at a higher level in the network. Through coevolution (i.e. candidates were evaluated by

playing against each other), Blondie24 was able to reach expert-level play on a popular Internet checkers

server (13). However, an intriguing alternative would remove the need for engineering by learning geomet-

ric regularities on its own. This is the idea behind the HyperNEAT approach taken in this paper. The next

section describes NEAT, which is extended later to implement HyperNEAT.

5

Figure 1: Blondie24 ANN Topology (13). The first hidden layer contains a node for every subsquare of
the board of size greater than 2× 2. Positions on the board are linked to the corresponding subsquares that
contain these positions. This layer then connects to hidden layers that finally connect to the output node.
Each valid square on the board connects directly to the output node.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

The approaches compared in this paper are variants of the NEAT method (79, 82), which, like the approach

in Blondie24 (13), evolves ANNs. In addition to evolving weights of connections, NEAT can build structure

and add complexity. While the encoding in NEAT is direct, it turns out that it can be made indirect, which

is the idea behind HyperNEAT. NEAT itself is a leading neuroevolution approach that has shown promise

in board games and other challenging control and decision making tasks (1, 82, 83, 85, 88). This section

reviews the NEAT method; for a full description see Stanley and Miikkulainen (79, 82), Stanley et al. (84).

NEAT is based on three key ideas. First, to allow network structures to increase in complexity over

generations, a method is needed to keep track of which gene is which. Otherwise, it is not clear in later

generations which individual is compatible with which, or how their genes should be combined to produce

offspring. NEAT solves this problem by assigning a unique historical marking to every new piece of network

structure. The historical marking is a number assigned to each gene based on its order of appearance over

the course of evolution. The numbers are inherited during crossover unchanged, and allow NEAT to perform

crossover without the need for topological analysis. That way, networks of different organizations and sizes

stay compatible throughout evolution.

Second, NEAT divides the population into species, so that individuals compete primarily within their

own niches instead of with the population at large. This way, topological innovations are protected and

have time to optimize their structure before competing with other niches in the population. NEAT uses the

historical markings on genes to determine to which species different individuals belong.

Third, NEAT begins with a uniform population of simple networks with no hidden nodes, differing

only in their initial weights. Speciation protects new innovations, allowing diverse topologies to increase

6

gradually in complexity over evolution. Thus, NEAT can start minimally, and grow the necessary structure

over generations. Through increasing complexity, high-level features can be established early in evolution

and then elaborated and refined as new genes are added (2). Each component of NEAT was originally

validated through a series of ablation studies (79). The most important concept for the purposes of this

paper is that NEAT can evolve the right network structure and connection weights for the task. The next

section reviews the extension of NEAT that allows it to evolve geometric relationships automatically.

2.3 CPPNs and HyperNEAT

Like many methods in machine learning, the reason that regular NEAT cannot explicitly learn geometric

regularities is that when it learns to represent important local relationships (e.g. how a checkers piece in one

square can be threatened by another in an adjacent square), it cannot extend that relationship as a pattern of

connectivity across the entire neural structure connecting to the board. In other words, it needs to rediscover

similar concepts multiple times.

The main idea in HyperNEAT is that it is possible to learn such relationships if the solution is repre-

sented indirectly, which means that it is a generative description of the connectivity of the ANN, rather than

embodying the connection weights of the ANN itself. As explained briefly in Section 2.1, unlike a direct

representation, wherein every dimension in the solution space (i.e. the phenotype in evolutionary compu-

tation) is described individually (i.e. by its own gene), an indirect representation can describe a pattern of

values in the solution space without explicitly enumerating every such value. That is, information is reused

in such an indirect encoding, which is a major focus in the field of generative and developmental systems,

the subfield of evolutionary computation from which HyperNEAT originates (5, 10, 23, 43, 57, 59, 81, 90).1

HyperNEAT is based on an indirect encoding called compositional pattern producing networks (CPPNs;

77). The idea behind CPPNs is that patterns such as those seen in nature can be described at a high level

as a composition of functions that are chosen to represent several common motifs in patterns. For example,

because the Gaussian function is symmetric, when it is composed with any other function, the result is a

symmetric pattern. The appeal of this encoding is that it allows patterns with regularities such as symmetry

(e.g. with Gaussians), repetition (e.g. with periodic functions such as sine), and repetition with variation (e.g.

by summing periodic and aperiodic functions) to be represented as networks of simple functions, which

means that NEAT can evolve CPPNs just as it evolves ANNs. While CPPNs are similar to ANNs, the

distinction in terminology is particularly important for explicative purposes because in HyperNEAT, CPPNs

describe ANNs. Formally, CPPNs produce a phenotype that is a function of n dimensions, where n is the

number of dimensions in a geometric space. For each coordinate in that space, its level of expression is an

output of the function that encodes the phenotype. Figure 2 shows how a two-dimensional pattern can be

generated by a CPPN that takes two inputs.

The main idea in HyperNEAT is to extend CPPNs, which encode two-dimensional spatial patterns, to

also represent connectivity patterns (20, 34, 86). That way, NEAT can evolve CPPNs that represent ANNs
1The ideas in GDS extend back to Turing (90), who experimented with pattern formation through reaction-diffusion systems.

7

(Applied at
each point)

value
at (x,y)

y

x

y

x
CPPN

(a) Mapping

x y

output pattern

bias

(b) Composition

Figure 2: CPPN Encoding. (a) The CPPN takes arguments x and y, which are coordinates in a two-
dimensional space. When all the coordinates are drawn with an intensity corresponding to the output of the
CPPN, the result is a spatial pattern, which can be viewed as a phenotype whose genotype is the CPPN.
(b) Internally, the CPPN is a graph that determines which functions are connected. As in an ANN, the
connections are weighted such that the output of a function is multiplied by the weight of its outgoing
connection. The CPPN in (b) actually produces the pattern in (a)

with symmetries and regularities that are computed directly from the geometry of the task inputs. The

key insight is that 2n-dimensional spatial patterns are isomorphic to connectivity patterns in n dimensions,

i.e. in which the coordinate of each endpoint is specified by n parameters. Therefore, the connectivity

patterns encoded by CPPNs can exhibit the same kinds of symmetries and regularities as those seen in

CPPN-generated spatial patterns.

Consider a CPPN that takes four inputs labeled x1, y1, x2, and y2; this point in four-dimensional space

can also denote the connection between the two-dimensional points (x1, y1) and (x2, y2), and the output

of the CPPN for that input thereby represents the weight of that connection (figure 3). By querying every

possible connection among a set of points in this manner, a CPPN can produce an ANN, wherein each

queried point is the position of a neuron. Because the connection weights are produced as a function of

their endpoints, the final structure is produced with knowledge of its geometry. In effect, the CPPN paints

a pattern on the inside of a four-dimensional hypercube that is interpreted as an isomorphic connectivity

pattern, which explains the origin of the name Hypercube-based NEAT (HyperNEAT). The example in

figure 4 illustrates the natural connection between the function embodied by the CPPN and the geometry of

the resultant network. Connectivity patterns produced by a CPPN in this way are called substrates so that

they can be verbally distinguished from the CPPN itself, which has its own internal topology.

Recall that each queried point in the substrate is a node in an ANN. The experimenter defines both the

location and role (i.e. hidden, input, or output) of each such node. As a rule of thumb, nodes are placed

on the substrate to reflect the geometry of the task, which makes the setup straightforward (19, 20, 34, 86).

That way, the connectivity of the substrate becomes a direct function of the task structure.

For example, in a board game, the inputs can be placed on the substrate in a two-dimensional plane

just as their corresponding squares are arranged on the board, as in figure 3. In this way, knowledge about

the problem can be injected into the search and HyperNEAT can exploit the regularities (e.g. adjacency, or

8

Substrate

1) Query each potential
connection on substrate

2) Feed each coordinate
 pair into CPPN

3) Set weight of
connection between
(x1,y1) and (x2,y2)

CPPN

X2

Y2

X1

Y1

Figure 3: Hypercube-based Geometric Connectivity Pattern Interpretation. A grid of nodes, called the
substrate, is assigned coordinates. (1) Every potential connection in the substrate is queried to determine its
presence and weight; the directed line shown in the substrate represents a sample connection that is queried.
(2) For each query, the CPPN takes as input the positions of the two endpoints and (3) outputs the weight
of the connection between them. In this way, connective CPPNs produce regular patterns of connections in
space.

(a) CPPN (b) ANN (Substrate)

Figure 4: Example CPPN Describing Connections from a Single Node. An example CPPN (a) with
five inputs (x1, y1, x2, y2, bias) and one output (weight) contains a single Gaussian hidden node and five
connections. The function produced is symmetric along x1and x2 (because of the Gaussian) and linear
with respect to y2 (which directly connects to the CPPN output). For the given fixed input coordinate
(x1 = 0, y1 = 0), the CPPN in effect produces the function Gaussian(−x2)− y2. This pattern of weights
from input node (0, 0) is shown on the substrate (b). Weight magnitudes are indicated by thickness. Note
that the pattern produces a set of weights that are symmetric along the x-axis and linearly decreasing as
the values of y2 increases. In this way, the function embodied by the CPPN encodes a geometric pattern of
weights in space. HyperNEAT evolves the topologies and weights of such CPPNs.

9

symmetry) of a problem that are invisible to traditional encodings (Algorithm 1). For full descriptions of

HyperNEAT see D’Ambrosio and Stanley (20), Gauci and Stanley (34), Stanley et al. (86). The next section

explains in detail how checkers is represented and learned by HyperNEAT.

Input: Substrate Configuration
Output: Solution CPPN
Initalize population of minimal CPPNs with random weights;1

while Stopping criteria is not met do2

foreach CPPN in the population do3

foreach Possible connection in the substrate do4

Query the CPPN for weight w of connection;5

if Abs(w) >Threshold then6

Create connection with a weight scaled proportionally to w (figure 3);7

end8

end9

Run the substrate as an ANN in the task domain to ascertain fitness;10

end11

Reproduce CPPNs according to the NEAT method to produce the next generation;12

end13

Output the Champion CPPN;14

Algorithm 1: Basic HyperNEAT Algorithm

3 Approach: Learning Regularities in Checkers

As noted in Section 1, the game of checkers is chosen for the experiments in this paper because it is intu-

itively geometric. While approaches like Blondie24 engineer geometry into the ANN topology in the hope

that such engineering may be useful, the idea in HyperNEAT is to learn from geometry by generating the

policy network as a direct function of task geometry. This section explains how that is done in the game of

checkers.

To apply HyperNEAT to checkers, the substrate input layer is arranged in two dimensions to match the

geometry of the checkers board (figure 5). Notice that the substrate in figure 5 includes a hidden layer.

Thus, it is analogous to two substrates (e.g. figure 3) stacked on top of each other. In particular, the two-

dimensional input layer connects to an analogous two-dimensional hidden layer so that the hidden layer

can learn to process localized geometric features. The hidden layer then connects to a single output node,

whose role is to evaluate board positions. The CPPN distinguishes the set of connections between the inputs

and the hidden layer from those between the hidden layer and the output node by querying the weights of

each set of connections from a separate output on the CPPN (note the two outputs in the CPPN depiction in

figure 5). That way, the x and y positions of each node are sufficient to identify the queried connection and

the outputs differentiate one connection layer from the next. Because the CPPN can effectively compute

connection weights as a function of the difference in positions of two nodes, it can easily map a repeating

concept across the whole board.

10

Figure 5: Checkers Substrate. The substrate (at left) contains a two-dimensional input layer (A) that
corresponds to the geometry of a game board, an analogous two-dimensional hidden layer (B), and a single-
node output layer (C) that returns a board evaluation. The two CPPNs (at right) are depictions of the same
CPPN being queried to determine the weights of two different substrate connections. The bottom CPPN
depiction receives as input the x and y coordinates of a node in A and a node in B and returns the weight of
this connection from its AB output node. Similarly, the top depiction of the same CPPN is being queried for
the weight of a connection between B and C and therefore returns this weight from its BC output. In this
way, a four-input CPPN can specify the connection weights of a two-layer network structure as a function
of the positions, and hence the geometry, of each node.

In this way, the substrate is a board evaluation function. The function inputs a board position and

outputs its value for black. To evaluate the board when it is white’s turn to move, the color of the pieces

can be reversed and then the sign of the result inverted. To decide which move to make, a minimax search

algorithm runs to a fixed ply depth of four. Alpha-beta pruning (52) and iterative deepening (72) techniques

increase performance without changing the output. The output of the substrate is the heuristic score for the

minimax algorithm.

This approach allows HyperNEAT to discover geometric regularities on the board by expressing con-

nection weights as a function of geometry. It is therefore unnecessary to manually engineer the network

topology, or divide the input space into subsections in an attempt to inject a priori theories about the key

regularities in the game into the representation. Because HyperNEAT discovers geometric relationships on

its own, an identical substrate can be applied to other board games even without knowledge of the game

rules, contributing to the generality of the approach.

4 Experiment

The experiment is designed to investigate the role of neural geometry in solving a problem that is clearly

geometric. The idea is to learn to defeat a single fixed training opponent and then test for generalization

against variations of this opponent. Thus rather than producing the best possible checkers player, the aim is

to analyze in detail the implications of a geometric representation, not only for learning, but especially for

generalization beyond what was trained.

11

Board games are an effective platform to discern the importance of geometry because they depend

heavily on geometric relationships that often repeat across the board. Therefore, to begin the investigation,

this paper compares four evolutionary approaches that take geometry into account to varying degrees in the

domain of checkers. Each approach is trained against the same hand-engineered deterministic opponent

(24). The opponent is a linear combination of several heuristics, including material possession, positional

bias, whether pieces on the back row have been moved (which would lower the score), whether a double

corner is intact, and who controls the center and the edge of a board. Thus, the deterministic opponent is

nontrivial, i.e. not just a simple piece counter. During evolution, each candidate plays a single game as black

against the opponent to determine its fitness. Both the evolved player and the opponent evaluate boards that

are four ply ahead. Fitness is computed as a function of both the final game state and intermediate board

states. At each turn t, fitness ft is awarded based on the current board state according to the equation:

ft = 100 + 2ms + 3ks + 2(12−mo) + 3(12− ko), (1)

where ms and mo are the number of regular pieces possessed by the learner and the opponent, respectively,

and ks and ko are the number of kings. The coefficients 2 and 3 represent the values of pieces and kings

respectively, denoting that kings are roughly 1.5 times as valuable as regular pieces. Because there are

at most 12 pieces of any given type, the number 12 ensures positive values for its respective terms. This

function rewards incremental progress and provides a smoother learning gradient than simply awarding

fitness based on the final score. The value of 100 per turn rewards individuals more who play games that

last a longer number of turns. Thus, evolved players that lose quickly will receive less fitness. If the evolved

player wins, fitness is awarded over 100 turns, even if the game ends earlier. That way, winning early is

not penalized. If the candidate wins against the training opponent, an additional 30,000 is added to the total

fitness. It is important to note that this fitness function is unique and not based on Blondie24, whose results

are therefore not directly comparable.

The learned strategies are then tested against a non-deterministic variant of the same opponent. This

variant has a 10% chance of choosing the second-highest scoring move instead of the optimal move found

in minimax search. This approach is similar to work done by Fogel (31), who also implemented a percent

chance of picking a random move to diversify a deterministic opponent. Methods that evolve more general

solutions should produce policies that win more such games.

The four compared approaches are chosen carefully to isolate the issue of geometric processing. There-

fore, they are all variants of the same NeuroEvolution of Augmenting Topologies (NEAT) approach. This

shared basis means that differences in performance are attributable to the way each approach processes its

inputs. For all four approaches, input values of 0.5 and -0.5 encode black and white pieces, respectively.

Kings are represented by a magnitude of 0.75, which is similar to the approach in Chellapilla and Fogel

(13), who showed that multiplying the standard piece input magnitude by 1.3 produces a good magnitude

for kings in their approach. A single output expresses the value of the current board state for black.

Regular NEAT inputs a vector of length 32 in which each parameter represents a square on the board

that can potentially hold a piece. NEAT evolves the topology and weights between the input and output

12

nodes.

NEAT-EI is an attempt to enhance NEAT’s ability to take into account geometric regularities across the

board by supplying additional engineered inputs (EI). It has the same inputs as NEAT; however, the starting

network topology is engineered as in Blondie24 to have additional inputs that focus on geometric regions of

differing sizes (13; figure 1). The result of training NEAT-EI in this paper cannot be compared directly to

Blondie24 because Blondie24 is the result of coevolution while the policies in this paper are evolved against

a fixed opponent. Rather than evolving the best possible player, the goal in this paper is to fairly compare

the generalization of different representations, thereby isolating the issue of generalization.

HyperNEAT inputs are arranged in a two-dimensional 8 × 8 grid that forms the first layer of a three-

layer substrate (figure 5). For HyperNEAT, NEAT evolves the CPPN that computes the connection weights

of the substrate.

If it is indeed possible to exploit geometry to improve play, the better an approach can represent geo-

metric relationships (either through learning or a priori engineering), the better that method should learn and

generalize.

FT-NEAT (fixed-topology NEAT) inputs are arranged in the same configuration as in the substrate in

HyperNEAT (figure 5). FT-NEAT evolves the weights of this ANN but not the topology. Thus FT-NEAT

must evolve the connection weights of over 4,000 directly-encoded connections, helping to confirm that it

is not just the particular topology of the substrate in figure 5, but more importantly the indirect encoding in

HyperNEAT, that provides an advantage.

After the experimental comparison among the four methods, an extensive analysis of substrate visu-

alizations from more and less general HyperNEAT-evolved players investigates how geometry influences

generalization, and the way evolved maps are organized.

4.1 Experimental Parameters

Because HyperNEAT and NEAT-EI extend NEAT, they both use the same parameters as NEAT (79). FT-

NEAT also uses the same parameters, except it does not add nodes or connections. The population size was

120 and each run lasted 200 generations. The disjoint and excess node coefficients were both 2.0 and the

weight difference coefficient was 1.0. The compatibility threshold was 6.0 and the compatibility modifier

was 0.3. The target number of species was eight and the drop off age was 15. The survival threshold within

a species is 20%. Offspring had a 3% chance of adding a node and a 5% chance of adding a link, and every

link of a new offspring had an 80% chance of being mutated. Available CPPN activation functions were

sigmoid, Gaussian, sine, and linear functions. Recurrent connections within the CPPN were not enabled.

Signed activation was used, resulting in a node output range of [−1, 1]. By convention, a connection is not

expressed if the magnitude of its weight is below a minimal threshold of 0.2 (34) otherwise, it is scaled

proportionally to the CPPN output. These parameters were found to be robust to variation in preliminary

experimentation.

13

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50 100 150 200

F
itn

es
s

Generation

HyperNEAT
NEAT-EI
NEAT
FT-NEAT

Figure 6: Fitness During Training. The fitness of the generation champions of each approach is shown,
averaged over 20 runs. HyperNEAT generation champions perform significantly better than NEAT-EI be-
tween generations 1 and 123 (p < .05 using Student’s t-test). Error bars show the 95% confidence interval.
HyperNEAT learns faster than NEAT-EI because its CPPN solutions require fewer dimensions to represent.

5 Results

Performance in this section is measured in two ways. First, the fitness of each approach is tracked during

training over generations, which gives a sense of relative training performance. Second, after training is

complete, the best solutions from each run play 100 games against the randomized opponent, yielding

generalization. The main question is whether HyperNEAT’s ability to learn from geometry benefits its

performance and generalization.

5.1 Training Performance

Figure 6 shows the average generation champion fitness over evolution, averaged over 20 runs. While none

of the runs of regular NEAT nor FT-NEAT were able to defeat the opponent within 200 generations, both

HyperNEAT and NEAT-EI learned to defeat it in all runs. On average, it took NEAT-EI 57.85 generations

to find a winning solution. HyperNEAT succeeds much more quickly, finding a winner in 8.2 generations

on average. These differences are statistically significant according to Student’s t-test (p < 0.05). This

disparity highlights the critical importance of learning from geometry. While defeating the heuristic appears

challenging with direct representations, it becomes easy if the solution is learned as a function of the board

geometry.

5.2 Generalization

Every generation champion that defeats the deterministic opponent plays 100 games against the randomized

opponent. Because regular NEAT and FT-NEAT could never defeat this opponent, they are not included in

this test. To make the comparison fair, only the most general solutions of each run are compared, which

means the generation champion with the highest score computed by W + T
2 , where W and T are the number

of wins and ties against the randomized opponent, respectively. The equation W + T
2 is used to convert a

wins, losses, and ties metric to a single scalar score. That way, the generalization results focus on the best

14

Figure 7: Generalization Results. Average wins, losses, and ties in 100 games against the randomized
opponent are shown for HyperNEAT and NEAT-EI, averaged over 20 runs of each. Only the most general
solutions of each run are included in the test. HyperNEAT solutions win significantly more games (p < 0.05)
and lose significantly fewer games (p < 0.05) than NEAT-EI. Error bars show a 95% confidence interval.
The difference in ties between the two methods is not significant (p ≈ 0.06).

possible generalization for both methods when they learn to defeat an identical opponent. The best possible

generalization represents what would result from an ideal validation of the trained opponents. While in the

real world such idealized validation may not always be possible, assuming reasonable effort on the part of the

experimenter, it is a yardstick for how well a system can be expected to perform in a reinforcement learning

task. A similar approach to measuring generalization in such a task is taken by Gruau et al. (39). Figure 7

shows the results of these solutions against the randomized opponent. HyperNEAT wins significantly more

and loses significantly less than NEAT-EI. The geometric encoding allows HyperNEAT to generalize across

the board.

5.3 Typical Solutions

HyperNEAT’s advantage is most evident in the middle-game and later. As the game tree branches, devia-

tion from the training opponent increases. Because HyperNEAT performs better in such novel situations,

it is more general. For example, figure 8 contrasts moves chosen by NEAT-EI solutions with those from

HyperNEAT from the same unfamiliar position. NEAT-EI players unnecessarily sacrifice pieces, while Hy-

perNEAT players rarely do from this position. Given that the evaluations during training consist of a single

game against a deterministic opponent, the ability of a solution evolved during training to perform well in

generalization tests against a non-deterministic opponent is significant. These typical solutions demonstrate

the idea that, because HyperNEAT evolves a pattern of weights across the geometry of the substrate, Hyper-

NEAT is able to evolve a player that can both defeat the deterministic heuristic and simultaneously perform

well in generalization tests, without any need for generalization pressure in the fitness function. Conversely,

NEAT-EI struggles to generalize, suggesting that NEAT-EI learned a specific subset of board states instead

of a general checkers strategy. In the case of NEAT-EI, generalization would likely benefit from playing

additional games in a single evaluation.

The most general solution in all runs of NEAT-EI has 126 nodes and 1,106 connections. In contrast, the

most general solution of HyperNEAT is a CPPN with only 23 nodes and 84 connections, which generates an

ANN with 129 nodes and 3,979 connections. Figure 9 illustrates this dramatic compression afforded by in-

15

(a) HyperNEAT Moves (b) NEAT-EI Moves

Figure 8: Requested moves from the same board position by HyperNEAT and NEAT-EI. This figure
depicts a position several moves into a game. Twenty moves requested by the champions of all NEAT-EI
runs are contrasted with twenty from HyperNEAT runs. All of the HyperNEAT runs suggest neutral or
positive moves. Six of the NEAT-EI runs make moves that lead to immediate, uncompensated loss. These
moves are denoted with a darker line and a square endpoint.

direct encoding in a typical HyperNEAT solution. In this way, HyperNEAT is able to explore a significantly

smaller search space (i.e. CPPNs) while still creating complex structures (i.e. substrates).

5.4 Substrate Visualizations

While the results so far establish that learning from geometry provides an advantage in both performance

and generalization, an important question is how exactly this advantage is realized. This section aims to

investigate this question by examining the internal connectivity and activation patterns of HyperNEAT-

trained networks. It is important to note that this study of the topographic layout of nodes and connectivity

within an evolved ANN is only possible because, unlike other neuroevolution algorithms (4, 9, 11, 12, 28,

31, 35, 39, 43, 51, 55, 58, 65, 66, 68, 69, 73, 76, 79, 96, 97), the neurons within a HyperNEAT substrate are

situated at geometric coordinates. This geometry is what affords the opportunity to observe patterns in their

actual situated geometric context, giving insight into why such a context is important to learning in general

and what kinds of opportunities it creates.

The particular focus of the analysis in this section is on the question of what kind of connectivity patterns

lead to generalization and what kind do not. To investigate this difference, a group of four highly general

HyperNEAT solutions and four HyperNEAT solutions that generalize less effectively (summarized in table

1) are visualized in two different ways:

First, the connectivity patterns of the solutions are visualized through images of influence maps and

receptive fields. These images are arranged vertically within a single panel in one column (figure 10). The

bottom image of each panel is a set of five influence maps that shows how individual inputs from the checkers

board influence the entire hidden layer. The intensity at each position within each such map represents the

magnitude of a single connection weight, and white triangles in the top-left corner of a position represent

negative connection weights (i.e. darker color denotes less influence). Thus a full influence map shows all

the weights projecting from a single input to the entire hidden layer. The five influence maps form a cross

16

Figure 9: Compression in CPPN Encoding. The CPPN at left, which is an actual solution against the
heuristic, contains only 18 connections, yet it encodes the connection weights of a substrate with over 4,000
connections. In this way, HyperNEAT searches a significantly lower-dimensional space than a direct encod-
ing. In the figure above, the letters A, B, and C, represent the input, hidden, and output layer, respectively.
The output labelled “AB” determines the connection weight for a link originating in the input layer and
terminating at the hidden layer (following figure 5).

Solution Wins Losses Ties
1 53 22 25
2 62 17 21
3 61 17 22
4 54 28 18

(a) General solutions against
non-deterministic heuristic

Solution Wins Losses Ties
1 35 24 41
2 39 8 53
3 38 33 29
4 35 17 48

(b) Less general solutions against
non-deterministic heuristic

Table 1: Selected general and less general HyperNEAT solutions. The two tables show the wins, losses,
and ties of selected (a) general and (b) less general champions against the non-deterministic heuristic that
are visualized later in this section. Note that the champions selected are not necessarily the champions
of the run. Because the training phase involves only a single game against a deterministic heuristic, there
is no explicit reward for generality in the fitness function. Even so, some of the runs produce solutions
that generalize better than others. Note that because HyperNEAT generalizes well on average, the poorest
generalizers from HyperNEAT still out-generalize average NEAT-EI champions significantly. Nevertheless,
the difference between these less general champions and those that are even more general still helps to
elucidate the factors underlying effective generalization.

17

Figure 10: Visualizing connection weights. In this section (figures 12 and 13), connection weights within
substrates are depicted as shown in this figure. For the influence maps (bottom), the lines show from which
square on the checkers board each influence map originates. Similarly, receptive fields (middle and top) are
shown for the hidden nodes with which each such field is connected. An influence map originates from a
single input, and a receptive field terminates at a single hidden node. The cross patterns are designed to
make it easy to see how the pattern of each influence map or receptive field varies with their originating
position.

shape, symbolizing that they represent images coming from five locations on the checkers board, as shown

in figure 10. Above the five influence maps are a similar five receptive field visualizations. These images

are designed to show how each hidden node sees all of the inputs that can connect to it. Like the influence

maps, the five receptive field visualizations are also shown in a cross, in this case to represent where in the

hidden layer the receiving node is located. The single image at the top is the receptive field of the single

output node, which shows the connection weights from the hidden layer to the output, which is how the final

computation of the board value is completed.

Second, visualizations of hidden layer activation patterns for several board positions illustrate how

boards are evaluated in the game tree (figure 11). Each figure with this type of visualization displays a row

of activation patterns obtained by the champion of a particular run from table 1. The activation pattern is

illustrated by a column depicting the input board configuration (bottom), the hidden layer node activation

levels (middle), and the output activation (top), which is the value assigned to that board position for black.

These activation patterns are also organized topographically such that the activation level of each hidden

neuron is depicted at that neuron’s actual position in the substrate. Thus it is possible to see how the

activation levels relate to the network’s geometry. Each board position is an actual position encountered

during alpha-beta search, so the overall visualization makes it possible to see how the network represents

the difference between relatively good or bad situations. The board positions and activation patterns are

ordered from left to right by increasing output value so that it is easy to see how increasingly good positions

are represented by the network internally. Note that the sequence from left to right depicts board positions

18

Figure 11: Visualizing hidden layer activation patterns for different board positions. To understand how
different quality board positions influence the hidden layer of a particular general or less general substrate,
board positions and hidden layer activations in this section (figures 14–21) are visualized as shown in this
figure. Each such board position was actually encountered by alpha-beta search with the associated substrate
during gameplay. To elucidate how the hidden layer distinguishes worse from better positions, panels (a)
through (e) are always ordered from the lowest evaluation score returned by the substrate output to the
highest. That way, it is possible to understand the scenarios preferred by the learned evaluation function.
See text for full details.

that were encountered during alpha-beta search rather than a sequence of moves during actual gameplay.

The aim is to elucidate how judgments on board quality are represented.

The contrast between connectivity patterns from general (figure 12) and less general (figure 13) players

is surprisingly revealing. In fact, the distinguishing characteristic of general play is visually apparent by

simply observing its geometry: The connectivity patterns of networks that generalize most effectively ex-

hibit smooth boundaries while the boundaries of those that generalize poorly are jagged. This difference is

particularly prominent in the influence maps (at the bottom of figures 12 and 13), suggesting that influence

maps from inputs reveal an important facet of geometry. These characteristics are consistent across all gen-

eral and less general solutions in figures 12 and 13. Thus there is a strong correlation between generality

and geometric smoothness.

The role of smoothness in generalization yields the important insight that the ability to represent smooth

regularity is a critical prerequisite to consistent generalization. In contrast, jaggedness suggests memoriza-

tion of the specific situations encountered while playing the particular opponent heuristic (recall that both

general and less general solutions defeated the deterministic heuristic during training). The irregularity of

the jagged solutions, which nevertheless beat the training heuristic, is an artifact of the peculiarities of the

heuristic itself and not always useful when playing even slightly altered strategies.

Interestingly, smooth regularity is only natural to represent in a geometric context. After all, the connec-

tivity that emanates from each input neuron in figure 12 varies in a regular geometric fashion as the source

neuron shifts position across the board (observe the pattern at different locations within each cross). Only

an indirect encoding that describes connectivity as a function of geometry is likely to consistently yield

19

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
12

:
C

on
ne

ct
iv

ity
pa

tt
er

ns
of

ge
ne

ra
ls

ol
ut

io
ns

.
In

flu
en

ce
m

ap
s

an
d

re
ce

pt
iv

e
fie

ld
s

(a
s

ex
pl

ai
ne

d
in

fig
ur

e
10

)
ar

e
sh

ow
n

fo
r

fo
ur

ge
ne

ra
l

so
lu

tio
ns

.
A

n
im

po
rt

an
tf

ea
tu

re
sh

ar
ed

by
al

lg
en

er
al

so
lu

tio
ns

is
th

at
th

ei
r

co
nn

ec
tiv

ity
pa

tte
rn

s
ar

e
sm

oo
th

an
d

co
nt

in
uo

us
.

T
he

y
al

so
va

ry
in

a
re

gu
la

rf
as

hi
on

w
ith

th
ei

ro
ri

gi
na

tin
g

no
de

’s
lo

ca
tio

n
(b

ot
to

m
)o

rh
id

de
n

no
de

lo
ca

tio
n

(m
id

dl
e)

.

20

(a
)

(b
)

(c
)

(d
)

Fi
gu

re
13

:
C

on
ne

ct
iv

ity
pa

tt
er

ns
of

le
ss

ge
ne

ra
ls

ol
ut

io
ns

.
T

he
in

flu
en

ce
m

ap
s

an
d

re
ce

pt
iv

e
fie

ld
s

sh
ow

n
in

th
is

fig
ur

e
ar

e
fo

r
so

lu
tio

ns
th

at
ar

e
le

ss
ge

ne
ra

lt
ha

n
th

os
e

in
fig

ur
e

12
.

In
te

re
st

in
gl

y,
th

e
co

nn
ec

tiv
ity

pa
tte

rn
s

of
le

ss
ge

ne
ra

ls
ol

ut
io

ns
ar

e
m

ar
ke

dl
y

ja
gg

ed
an

d
di

sc
on

tin
uo

us
.

T
hi

s
pr

op
er

ty
is

in
di

ca
tiv

e
of

ov
er

sp
ec

ia
liz

at
io

n
to

th
e

tr
ai

ni
ng

he
ur

is
tic

21

such regularities. A direct encoding, on the other hand, cannot describe how a pattern varies smoothly over

space. Therefore, in a direct encoding, each individual connection is learned separately, most likely yielding

jagged patterns. (Note that because direct encodings do not have a geometry, they cannot be visualized in

this way; however, it is exactly this fact that prevents them from expressing smooth patterns that vary across

geometry.) In fact, if the patterns yielded by direct encodings could be situated geometrically, they would

likely be significantly more irregular than even those in figure 13, which still are at least the product of

indirect encoding.

In effect, the patterns in figure 12 are evolved topographic maps for the game of checkers. A special (and

unique) kind of receptive field is evolved in each case that moves in a predictable regular fashion across the

hidden layer in accordance with the position of the source neuron from the input layer. In the less general

solutions (figure 13), these maps are less regular and more distorted, hurting generalization.

Another important observation about the general patterns in figure 12 is that while they are all regular

and smooth, they are also all different from each other. That is, the receptive field structure in figure 12a

is unlike figure 12b,c,d, figure 12b is unlike 12a,c,d, etc. Therefore, interestingly, the implication is that

as long as smoothness and regularity are achieved in the influence maps, there are multiple ways to solve

the same problem effectively, perhaps explaining why HyperNEAT beats the heuristic so quickly while still

generalizing often. It is the bias towards smooth topographic maps that portends the ability to generalize.

As explained in figure 11, figures 14 through 21 show how these connectivity patterns, both general and

less general, integrate to evaluate actual board positions encountered in the game tree. It is important to

note that the precise value of the output node activation (shown at the top of each panel) is not important;

because evaluations are performed within an alpha-beta search, only the relative output impacts decision-

making. For example, a negative output value does not necessarily indicate a poor evaluation and vice

versa. It is also important to note that differences in board positions are often reflected in subtle changes in

neural activation among hidden nodes. Thus it is occasionally difficult to perceive these changes visually.

Nevertheless, they are often perceptible by comparing activation patterns closely, and their subtlety signifies

the precision with which the substrate disambiguates similar board positions.

Through figures 14–21, it is once again clear that there are many ways to solve checkers against the

heuristic. However, it is also apparent that the overall activation patterns on the hidden layer exhibit definite

shapes that are tied inextricably to the geometry of the board itself. That is, areas of high activation are

normally all adjacent and separated from areas of low activation, even if these areas appear in different

locations for different solutions. Thus the overall activation pattern, which is realized through the individual

neural connectivity patterns in figure 12, are also fundamentally geometric, combining the joint assessments

of each individual receptive field.

Less general solutions (figures 18–21) yield activation patterns that are mainly jagged and discontinuous.

These shapes do not resemble general solutions (figures 14–17), although they still exhibit patterns that are

geometric. The jaggedness in the patterns suggests that the solutions are able to defeat the deterministic

heuristic by memorizing certain states, and not by encoding a holistic pattern that describes the dynamics of

checkers.

22

Output: -0.205

(a)

Output: -0.148

(b)

Output: -0.03

(c)

Output: 0.036

(d)

Output: 0.061

(e)

Figure 14: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the general solution shown in figure 12a. This substrate prefers black density in the lower-right
sector of the board. As a result, black aims to bunch into a group. This structure prevents any single piece
from being taken.

Output: -0.053

(a)

Output: -0.043

(b)

Output: -0.008

(c)

Output: 0.005

(d)

Output: 0.015

(e)

Figure 15: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the general solution shown in figure 12b. Like the solution in figure 14, this substrate also
prefers a defensive stance with density in the back rows. However, unlike in figure 14, this strategy prefers
density on the left.

23

Output: -0.033

(a)

Output: 0.011

(b)

Output: 0.032

(c)

Output: 0.175

(d)

Output: 0.189

(e)

Figure 16: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the general solution shown in figure 12c. In (a), the breakaway black piece has no chance to
escape, yielding a low evaluation. In evaluation (b), the piece still has no escape but is unable to be taken
directly, producing a slightly higher score. Improving the situation slightly again (c), the piece is not in
immediate danger but is too far up the board to be defended. The situation is best in (e) because, while
black’s piece is far up the board, it is backed up by additional pieces nearby.

Output: -0.692

(a)

Output: -0.680

(b)

Output: -0.605

(c)

Output: -0.578

(d)

Output: -0.561

(e)

Figure 17: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the general solution shown in figure 12d. In the lowest scoring evaluation (a), only a single
black piece is near the opponent’s side of the board. There is an additional such black piece in (b), and three
such black pieces in (c). In (d), the three black pieces are better defended, and in evaluation (e), white will
be forced to take and will be less one piece in the center as a result. Thus this substrate favors an aggressive
stance.

24

Output: -0.861

(a)

Output: -0.840

(b)

Output: -0.835

(c)

Output: -0.805

(d)

Output: -0.793

(e)

Figure 18: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the less general solution shown in figure 13a. In (a), there are several white pieces in the center.
The black pieces creep forward in (b) and (c). In (d), white pieces do not control of the center, and in (e),
white has even less material in the center. However, this less general solution considers (e) a good move
even though the white piece will double-jump on its next turn.

Output: -0.275

(a)

Output: -0.259

(b)

Output: 0.004

(c)

Output: 0.190

(d)

Output: 0.221

(e)

Figure 19: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for less general solution shown in figure 13b. Moving from left (a) to right (e), black pieces assume
more control of the center. However, this less general solution rates (d) highly even though the white piece
in the middle will double-jump the center black pieces on the next turn.

25

Output: -0.303

(a)

Output: -0.191

(b)

Output: -0.049

(c)

Output: 0.286

(d)

Output: 0.433

(e)

Figure 20: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the less general solution shown in figure 13c. In (a), two black pieces are far up the board,
leaving little control of the center. As the evaluations improve in (b) through (e), black gains a stronger
foothold on the center of the board and better support for pieces in white’s territory. However, this less
general solution favors (d) even though black’s control of the center is prone to attack from white.

Output: -0.751

(a)

Output: -0.627

(b)

Output: -0.350

(c)

Output: 0.200

(d)

Output: 0.561

(e)

Figure 21: Board positions and associated hidden layer activation patterns encountered by alpha-beta
search for the less general solution shown in figure 13d. Three black pieces in the center of (a) are hard
to defend (i.e. they are spread out). Their position improves in (b). In (c), black also has a full back rank
(i.e. all of the pieces on the back row are still in their starting configuration). One black piece is far up the
board in (d), and in (e), black has both a piece far up the board and a full back rank. However, while this less
general solution highly rewards (e), white is forced to capture black’s most forward piece on the next turn.

26

The general solutions (figures 14–17) typically favor a holistic strategy. For example, in figures 14 and

15, keeping pieces in a tightly bound group at the back of the board is rewarded, although the lateral focus

of density (i.e. left versus right) differs. In contrast, the substrates in figures 15 and 16 favor solutions that

are more aggressive and attempt to control of the center of the board. Nevertheless, the principle that unifies

all these approaches is their generality; they are sensitive to relative concentrations of groupings of pieces.

Less general solutions (figures 18–21), while often reasonable, exhibit idiosyncratic holes in their ap-

proach that are reflected in their more piecemeal activation patterns. As described in figures 18–21, such

idiosyncrasies often yield specific evaluations that are fundamentally flawed. For example, position 19d is

rated relatively highly, yet leaves black open to a double-jump on the next turn, after black takes white’s

piece. Position 21e rewards black for advancing up the board, but does not account for the fact that white

will capture the leading piece on the next turn. The fact that solutions that do not have a smooth geometry

make such mistakes despite defeating the deterministic heuristic further suggests that generality is linked to

smooth geometry.

The analysis in this section shows what it means to learn from geometry. In effect, learning from

geometry means being able to correlate topographic maps to the geometry of the world. This ability affords

smooth regular connectivity patterns, which this section showed are often correlated to the more general

checkers players. The next section explores the deeper implications of this discovery and what it means for

artificial evolution in general.

6 Discussion and Future Work

A major difference between traditional multilayer perceptrons (MLPs; 60) and biological brains is that

real brains profusely exploit topographic relationships (75). Some artificial neural models such as self-

organizing maps (SOMS; 53) and cortical models (6, 7, 87) exhibit geometric structure, but the connec-

tivity and topographic correlations in such models are not evolved. A key contribution of this paper is to

show that it is possible for an evolutionary algorithm to actually evolve its own topographic maps that are

domain-appropriate. This development is intriguing because it means that neuroevolution algorithms can

now produce structures more reminiscent of biological brains.

Furthermore, an important result in this paper is to show why evolving such structures is advantageous.

In particular, at least in checkers, visualizing artificially evolved influence maps and receptive fields suggests

an intimate connection between generalization and geometry. The connectivity patterns that exhibit smooth-

ness, a qualitative assessment of the gradient across the hypercube of connection weights, were shown to be

correlated to generalization, a quantitative assessment of the substrate against new opponents.

HyperNEAT is biased towards creating general players because the low complexity of the initial pop-

ulation of CPPNs tends to start evolution with simple, smooth geometries. However, it is not guaranteed

to produce general results; several runs yielded less general solutions. Nevertheless, it is important to note

that even these less general solutions still generalize significantly better than NEAT-EI on average, suggest-

ing that NEAT-EI cannot easily encode the same smooth regularities that are demonstrated in HyperNEAT.

27

Even worse, no runs of regular NEAT or FT-NEAT were able to defeat the deterministic heuristic in train-

ing, illustrating the necessity of capturing at least some geometric regularities, whether through an indirect

encoding such as HyperNEAT, or through a engineered topology such as NEAT-EI. While engineering ge-

ometry into the network connectivity (as with NEAT-EI) provides NEAT a necessary advantage, it is not

able to outperform HyperNEAT’s ability to learn from geometry.

It is important to note that HyperNEAT solutions generalize significantly better than NEAT-EI solutions

even though both methods trained against (and eventually defeated) the same heuristic in training. This

difference is explained by HyperNEAT’s indirect encoding: Because HyperNEAT CPPNs initially are much

smaller than NEAT-EI genomes, they are biased towards representing substrates that are highly regular, but

also successful in the domain of checkers. Because the direct encoding must learn each link weight indi-

vidually, it searches through a comparatively high-dimensional space of neural networks, while the indirect

encoding searches through a compressed (and hence lower-dimensional) space of solutions by leveraging

its more powerful representation. HyperNEAT’s representation naturally describes the geometric regular-

ities of the problem domain. This capability helps in checkers because the domain (like many others) is

inherently geometric. For example, the same rules generally apply to each piece at any position. Thus, the

domain of checkers helps to illustrate the advantage of an indirect encoding based on geometry, such as in

HyperNEAT.

However, the scope of domains that are inherently geometric is not limited to checkers and other board

games. For example, Clune et al. (17, 18, 19), D’Ambrosio and Stanley (20, 21), Gauci and Stanley

(34), Stanley et al. (86) show that visual discrimination and robot control domains can also benefit from

indirect encoding through geometry. The inspirations for such domains are the vision and control systems

of the human brain. In fact, topographic maps, which often have a geometry isomorphic to the external en-

vironment, are studied in the context of biological brains (14, 16, 37, 50, 75). For example, the somatotopic

representation of the human body in the brain exhibits a similar geometry to the body itself (67, 95). Interest-

ingly, ANNs evolved with HyperNEAT have receptive fields and influence maps that can be visualized much

like such topographic maps in biological brains. Thus topographic maps in ANNs evolved by HyperNEAT

are reminiscent of their more sophisticated biological counterparts, suggesting the start of an intriguing new

direction of research in artificially-evolved substrates. In addition, not only do such maps arise, but in this

paper their analysis helped to establish a connection between the smoothness and regularity of the geometry

of such a map and its generalization. As a result, the surprising insight is that a qualitative assessment of

evolved topographic maps translates directly to quantitative performance results in the generalization test.

Interestingly, any domain that exists in a space of multiple dimensions contains at least an implicit

geometry that can be potentially exploited through an indirect encoding based on geometry. Clune et al.

(19) demonstrate that, even when the geometry of an ANN that controls a robot is scrambled, HyperNEAT

is able to find regularities within the scrambled geometry. Thus, future work for this approach will explore

other challenging domains. The board game Go is one such appealing candidate for further research because

its geometry is similar to checkers. Beyond board games, promising avenues include continuing work in

vision (34) and robot control (20). While early such work focused on relatively simple problems, it is not

28

known how close evolved indirect encodings can approach the complexity of biological brains, which are

clearly suited for such tasks. Even if approaches such as HyperNEAT do not reach such ambitious scale,

lessons learned along the way, such as the connection between smooth geometry and generalization, promise

to be illuminating.

For example, an interesting question is whether ANNs evolved by HyperNEAT for visual tasks might

resemble features in V1 or other parts of the biological visual processing hierarchy (6, 44). While the human

primary visual cortex contains about 140 million neurons (56), HyperNEAT has evolved functional networks

with millions of connections (86). Furthermore, while biological brains (including the visual cortex) exhibit

synaptic plasticity (47), ANNs with plastic synapses have been evolved in the past (25–27, 70, 74), and in

principle HyperNEAT can potentially evolve the geometry of the learning rules, taking it another step closer

to biological plausibility. That is, HyperNEAT can potentially assign plasticity roles to connections in a

geometric pattern, which is necessary if plastic structures with millions of connections are to be evolved.

Thus, while the evolved maps in this paper are static, in principle the capability to encode such maps suggests

that evolving plastic maps with similar properties (e.g. geometry) is plausible.

Stepping back to the role of geometry in learning algorithms today, the results and analysis in this paper

suggest that an important prerequisite to exploiting geometry in learning is to be aware of it. That the CPPNs

in HyperNEAT literally see the positions of the nodes being connected affords the ability to exploit the

domain geometry by creating smooth, semi-regular patterns. To date, this ability to see the geometry of the

substrate is unique, yet it portends the importance of endowing future algorithms with a similar capability if

they are to exploit domain geometry effectively. Simply imagining trying to learn tic tac toe, a simple game,

on a scrambled board, illustrates the urgency of this consideration. Once the capability to perceive geometry

is made available, an exciting new research direction with interesting biologically parallels opens up.

7 Conclusions

This paper argued that representing evolved ANNs as indirect functions of their geometry evolves structures

that are closer to structures seen in biological brains than those evolved by prior NE approaches. In addition,

such a method is able to exploit the underlying geometric regularities in a problem to quickly find elegant

solutions to complex problems, provided that geometry plays a role in the problem domain.

The role of geometry was shown to be potentially useful to machine learning performance in the domain

of checkers. Regular NEAT and FT-NEAT were not able to defeat the deterministic heuristic in a single run

of training, while NEAT-EI and HyperNEAT were able to defeat the heuristic in all 20 runs. HyperNEAT was

able to find solutions relatively quickly by searching through the low-dimensional space of CPPNs, while

NEAT-EI took significantly longer, searching through the high-dimensional space of ANNs. In addition,

solutions produced by HyperNEAT generalized significantly better than solutions produced by NEAT-EI,

suggesting a link between HyperNEAT’s perception of geometry and generality.

This link was confirmed through a visual study of general and less general HyperNEAT solutions and

their performance in training. A correlation was drawn between the smoothness and continuity of connec-

29

tivity patterns across the layers of solutions and their generalization performance, suggesting that general

solutions encode ANNs that are smooth and regular, while less general solutions encode ANNs that are

jagged and discontinuous. The CPPNs that encoded jagged ANNs were specialized for the specific games

of checkers seen in training, while the CPPNs that encoded smooth ANNs were more general checkers

players.

These results suggest that NE methods should ideally both see the geometry of the domain, and be able

to encode and represent geometry in a way that creates smooth and regular ANNs. In this way, the ANNs

produced by NE can more closely resemble neural networks seen in natural brains. In the future, the results

of such artificial evolutionary approaches will offer increasing relevance to researchers beyond the field of

NE.

Acknowledgments

Special thanks to Martin Fierz for providing the Simplech checkers engine. Special thanks also to our

anonymous reviewers for helping to improve this work significantly.

References

[1] T. Aaltonen et al. Measurement of the top quark mass with dilepton events selected using neuroevolu-

tion at CDF. Physical Review Letters, 2009. To appear.

[2] Lee Altenberg. Evolving better representations through selective genome growth. In Proceedings of

the IEEE World Congress on Computational Intelligence, pages 182–187, Piscataway, NJ, 1994. IEEE

Press.

[3] Miguel A. Andrade, Enrique M. Muro, and Federico Morán. Simulation of plasticity in the adult

visual cortex. Biological Cybernetics, 84(6):445–451, 2001. URL http://link.springer.

de/link/service/journals/00422/bibs/1084006/10840445.htm.

[4] Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack. An evolutionary algorithm that con-

structs recurrent neural networks. IEEE Transactions on Neural Networks, 5:54–65, 1993.

[5] J. S. Astor and Chris Adami. A developmental model for the evolution of artificial neu-

ral networks. Artificial Life, 6(3):189–218, 2000. URL http://citeseer.nj.nec.com/

astor98development.html.

[6] James A. Bednar and Risto Miikkulainen. Joint maps for orientation, eye, and direction preference in

a self-organizing model of V1. Neurocomputing, 69(10–12):1272–1276, 2006. URL http://nn.

cs.utexas.edu/keyword?bednar:neurocomputing06.

30

http://link.springer.de/link/service/journals/00422/bibs/1084006/10840445.htm
http://link.springer.de/link/service/journals/00422/bibs/1084006/10840445.htm
http://citeseer.nj.nec.com/astor98development.html
http://citeseer.nj.nec.com/astor98development.html
http://nn.cs.utexas.edu/keyword?bednar:neurocomputing06
http://nn.cs.utexas.edu/keyword?bednar:neurocomputing06

[7] James A. Bednar, Amol Kelkar, and Risto Miikkulainen. Modeling large cortical networks with

growing self-organizing maps. Neurocomputing, 44–46:315–321, 2002. URL http://nn.cs.

utexas.edu/keyword?bednar:neurocomputing02. Special issue containing the proceed-

ings of the CNS*01 conference.

[8] Randall D. Beer. Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4:91–99,

2000.

[9] R.D. Beer and J.C. Gallagher. Evolving dynamical neural networks for adaptive behavior. Adaptive

behavior, 1(1):91, 1992.

[10] Petet J. Bentley and S. Kumar. The ways to grow designs: A comparison of embryogenies for an evo-

lutionary design problem. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-1999), pages 35–43, San Francisco, 1999. Kaufmann.

[11] Josh C. Bongard. Evolving modular genetic regulatory networks. In Proceedings of the 2002 Congress

on Evolutionary Computation, 2002.

[12] Heinrich Braun and Joachim Weisbrod. Evolving feedforward neural networks. In Proceedings of

ANNGA93, International Conference on Artificial Neural Networks and Genetic Algorithms, Berlin,

1993. Springer.

[13] Kumar Chellapilla and David B. Fogel. Evolving an expert checkers playing program without using

human expertise. IEEE Trans. Evolutionary Computation, 5(4):422–428, 2001.

[14] Dmitri B. Chklovskii and Alexei A. Koulakov. MAPS IN THE BRAIN: What can we learn from

them? Annual Review of Neuroscience, 27:369–392, 2004. URL http://www.cshl.edu/labs/

mitya/ChklovskiiKoulakov04.pdf.

[15] Yoonsuck Choe and Risto Miikkulainen. Contour integration and segmentation in a self-organizing

map of spiking neurons. Biological Cybernetics, 90:75–88, 2004. URL http://www.cs.tamu.

edu/faculty/choe/ftp/publications/choe.bc04.pdf.

[16] Paul M. Churchland. Some reductive strategies in cognitive neurobiology. Mind, 95:279–309, 1986.

URL http://w3.uniroma1.it/cordeschi/Articoli/churchland.htm.

[17] J. Clune, C. Ofria, and R.T. Pennock. How a Generative Encoding Fares as Problem-Regularity De-

creases. In Proceedings of the 10th international conference on Parallel Problem Solving from Nature:

PPSN X, pages 358–367. Springer, 2008.

[18] J. Clune, B.E. Beckmann, C. Ofria, and R.T. Pennock. Evolving Coordinated Quadruped Gaits with

the HyperNEAT Generative Encoding. 2009.

[19] Jeff Clune, Charles Ofria, and Robert T. Pennock. How a generative encoding fares as problem-

regularity decreases. In Proceedings of the 10th international conference on Parallel Problem Solving

from Nature, pages 358–367, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-87699-1.

31

http://nn.cs.utexas.edu/keyword?bednar:neurocomputing02
http://nn.cs.utexas.edu/keyword?bednar:neurocomputing02
http://www.cshl.edu/labs/mitya/ChklovskiiKoulakov04.pdf
http://www.cshl.edu/labs/mitya/ChklovskiiKoulakov04.pdf
http://www.cs.tamu.edu/faculty/choe/ftp/publications/choe.bc04.pdf
http://www.cs.tamu.edu/faculty/choe/ftp/publications/choe.bc04.pdf
http://w3.uniroma1.it/cordeschi/Articoli/churchland.htm

[20] David D’Ambrosio and Kenneth O. Stanley. A novel generative encoding for exploiting neural network

sensor and output geometry. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO 2007), New York, NY, 2007. ACM Press. To appear.

[21] David B. D’Ambrosio and Kenneth O. Stanley. Generative encoding for multiagent learning. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008), New York,

NY, 2008. ACM Press.

[22] F. Dellaert and R. D. Beer. Co-evolving body and brain in autonomous agents using a develop-

mental model. Technical Report CES-94-16, Dept. of Computer Engineering and Science, Case

Western Reserve University, Cleveland, OH, 1994. URL http://citeseer.nj.nec.com/

dellaert94coevolving.html.

[23] P. Eggenberger. Evolving morphologies of simulated 3D organisms based on differential gene expres-

sion. In Phil Husbands and Inman Harvey, editors, Proceedings of the Fourth European Conference

on Artificial Life, pages 205–213. Cambridge, MA: MIT Press, 1997. ISBN 0-262-58157-4. URL

http://citeseer.nj.nec.com/eggenberger97evolving.html.

[24] Martin Fierz. Simplech. http://arton.cunst.net/xcheckers/, 2002.

[25] D. Floreano and J. Urzelai. Evolution of Plastic Control Networks. Autonomous Robots, 11(3):311–

317, 2001.

[26] Dario Floreano and F. Mondada. Evolution of plastic neurocontrollers for situated agents. IEEE

Transactions on Systems, Man, and Cybernetics, 26(3):396–407, 1996.

[27] Dario Floreano and Joseba Urzelai. Evolutionary robots with online self-organization and behavioral

fitness. Neural Networks, 13:431–443, 2000.

[28] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architectures to

learning. Evolutionary Intelligence, 1(1):47–62, March 2008. doi: http://dx.doi.org/10.1007/

s12065-007-0002-4. URL http://dx.doi.org/10.1007/s12065-007-0002-4.

[29] David B. Fogel. Blondie24: Playing at the Edge of AI. Kaufmann, San Francisco, 2002.

[30] D.B. Fogel. Evolving artificial intelligence. 1992.

[31] DB Fogel. Using evolutionary programing to create neural networks that arecapable of playing tic-tac-

toe. In IEEE International Conference on Neural Networks, 1993., pages 875–880, 1993.

[32] D.B. Fogel, L.J. Fogel, and V.W. Porto. Evolving neural networks. Biological Cybernetics, 63(6):

487–493, 1990.

[33] D.B. Fogel, T.J. Hays, S.L. Hahn, and J. Quon. A self-learning evolutionary chess program. Proceed-

ings of the IEEE, 92(12):1947–1954, 2004.

32

http://citeseer.nj.nec.com/dellaert94coevolving.html
http://citeseer.nj.nec.com/dellaert94coevolving.html
http://citeseer.nj.nec.com/eggenberger97evolving.html
http://dx.doi.org/10.1007/s12065-007-0002-4

[34] Jason Gauci and Kenneth O. Stanley. Generating large-scale neural networks through discovering geo-

metric regularities. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2007), New York, NY, 2007. ACM Press. To appear.

[35] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex general behavior. Adaptive

Behavior, 5:317–342, 1997. URL http://nn.cs.utexas.edu/keyword?gomez:ab97.

[36] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. Accelerated neural evolution through

cooperatively coevolved synapses. J. Mach. Learn. Res., 9:937–965, 2008. ISSN 1533-7928.

[37] Geoffrey J. Goodhill and Miguel A. Carreira-Perpinn. Cortical columns. In L. Nadel, editor, Ency-

clopedia of Cognitive Science, volume 1, pages 845–851. MacMillan Publishers Ltd., London, 2002.

URL http://www.cs.toronto.edu/~miguel/papers/ps/ecs02.pdf.

[38] Frederic Gruau. Automatic definition of modular neural networks. Adaptive Behaviour, 3(2):151–183,

1995. URL http://citeseer.ist.psu.edu/126789.html.

[39] Frederic Gruau, Darrell Whitley, and Larry Pyeatt. A comparison between cellular encoding and

direct encoding for genetic neural networks. In John R. Koza, David E. Goldberg, David B. Fogel,

and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference,

pages 81–89, Cambridge, MA, 1996. MIT Press.

[40] Steven Alex Harp, Tariq Samad, and Aloke Guha. Towards the genetic synthesis of neural network.

In Proceedings of the third international conference on Genetic algorithms, pages 360–369, San Fran-

cisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. ISBN 1-55860-006-3.

[41] Gregory Hornby. Shortcomings with tree-structured edge encodings for neural networks. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 2004.

[42] Gregory S. Hornby and Jordan B. Pollack. The advantages of generative grammatical encodings for

physical design. In Proceedings of the 2002 Congress on Evolutionary Computation, 2001. URL

http://demo.cs.brandeis.edu/papers/long.html#hornby_cec01.

[43] Gregory S. Hornby and Jordan B. Pollack. Creating high-level components with a generative repre-

sentation for body-brain evolution. Artificial Life, 8(3), 2002.

[44] David H. Hubel. Eye, Brain, and Vision (Scientific American Library). W H Freeman & Co (Sd), 1988.

ISBN 0716750201.

[45] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and functional architec-

ture in the cat’s visual cortex. The Journal of Physiology, 160:106–154, 1962.

[46] David H. Hubel and Torsten N. Wiesel. Receptive fields and functional architecture of monkey striate

cortex. The Journal of Physiology, 195:215–243, 1968.

33

http://nn.cs.utexas.edu/keyword?gomez:ab97
http://www.cs.toronto.edu/~miguel/papers/ps/ecs02.pdf
http://citeseer.ist.psu.edu/126789.html
http://demo.cs.brandeis.edu/papers/long.html#hornby_cec01

[47] David H. Hubel, Torsten N. Wiesel, and S. LeVay. Plasticity of ocular dominance columns in mon-

key striate cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological

Sciences, 278:377–409, 1977.

[48] P. Husbands, T. Smith, N. Jakobi, and M. Shea. Better living through chemistry: Evolving GasNets

for robot control. Connection Science, 10(3):185–210, 1998.

[49] R.R. Kampfner and M. Conrad. Computational modeling of evolutionary learning processes in the

brain. Bulletin of mathematical biology, 45(6):931–968, 1983.

[50] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles of Neural Science. McGraw-

Hill, New York, fourth edition, 2000.

[51] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation system.

Complex Systems, 4:461–476, 1990.

[52] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial Intelligence, 6(4):293–326,

1975.

[53] Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-organizing system. In

Proceedings of the 2nd Scandinavian Conference on Image Analysis, pages 214–220, Espoo, Finland,

1981. Pattern Recognition Society of Finland.

[54] Maciej Komosinski and Adam Rotaru-Varga. Comparison of different genotype encodings for simu-

lated 3D agents. Artificial Life, 7(4):395–418, 2001.

[55] John R. Koza and James P. Rice. Genetic generation of both the weights and architecture for a neural

network. In In International Joint Conference on Neural Networks, pages 397–404. IEEE, 1991.

[56] G Leuba and R Kraftsik. Changes in volume, surface estimate, three-dimensional shape and total

number of neurons of the human primary visual cortex from midgestation until old age. volume 190,

pages 351–366. Springer Berlin / Heidelberg, 1994.

[57] A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and A. Salomaa,

editors, L Systems, Lecture Notes in Computer Science 15, pages 53–68. Springer-Verlag, Heidelberg,

Germany, 1974.

[58] Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature,

406:974–978, 2000. URL http://www.mae.cornell.edu/lipson/.

[59] Claudio Mattiussi and Dario Floreano. Analog Genetic Encoding for the Evolution of Circuits and

Networks. IEEE Transactions on Evolutionary Computation, 11(5):596–607, 2007. doi: 10.1109/

TEVC.2006.886801.

34

http://www.mae.cornell.edu/lipson/

[60] James L. McClelland, David E. Rumelhart, and Geoffrey E. Hinton. The appeal of parallel distributed

processing. In David E. Rumelhart and James L. McClelland, editors, Parallel Distributed Process-

ing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, pages 3–44. MIT Press,

Cambridge, MA, 1986.

[61] G. McHale and P. Husbands. Quadrupedal locomotion: GasNets, CTRNNs and hybrid CTRNN/PNNs

compared. In Artificial life IX: proceedings of the Ninth International Conference on the Simulation

and Synthesis of Artificial Life, page 106. The MIT Press, 2004.

[62] Risto Miikkulainen and Michael G. Dyer. Encoding input/output representations in connectionist

cognitive systems. In David S. Touretzky, Geoffrey E. Hinton, and Terrence J. Sejnowski, editors,

Proceedings of the 1988 Connectionist Models Summer School, pages 347–356. San Francisco: Kauf-

mann, 1989.

[63] Risto Miikkulainen, James A. Bednar, Yoonsuck Choe, and Joseph Sirosh. Computational Maps in the

Visual Cortex. Springer, Berlin, 2005. URL http://computationalmaps.org.

[64] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde. Designing neural networks using genetic

algorithms. In Proceedings of the third international conference on Genetic algorithms, pages 379–

384, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. ISBN 1-55860-006-3.

[65] David J. Montana and Lawrence Davis. Training feedforward neural networks using genetic algo-

rithms. In Proceedings of the 11th International Joint Conference on Artificial Intelligence, pages

762–767. San Francisco: Kaufmann, 1989.

[66] David E. Moriarty and Risto Miikkulainen. Efficient reinforcement learning through symbiotic evolu-

tion. In Leslie Pack Kaelbling, editor, Recent Advances in Reinforcement Learning. Kluwer, Dordrecht,

The Netherlands, 1996.

[67] A. Nakamura, T. Yamada, A. Goto, T. Kato, K. Ito, Y. Abe, T. Kachi, and R. Kakigi. Somatosensory

homunculus as drawn by MEG. Neuroimage, 7(4):377–386, 1998.

[68] David W. Opitz and Jude W. Shavlik. Connectionist theory refinement: Genetically searching the space

of network topologies. Journal of Artificial Intelligence Research, 6:177–209, 1997.

[69] Joao Carlos Figueira Pujol and Riccardo Poli. Evolving the topology and the weights of neural net-

works using a dual representation. Applied Intelligence Journal, 8(1):73–84, January 1998. Special

Issue on Evolutionary Learning.

[70] Sebastian Risi, Sandy D. Vanderbleek, Charles E. Hughes, and Kenneth O. Stanley. How novelty

search escapes the deceptive trap of learning to learn. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2009), New York, NY, 2009. ACM Press.

[71] Yael Rosen and Robert E. Lenkinski. Recent advances in magnetic resonance neurospectroscopy.

volume 4, pages 330–345. Elsevier B.V., 2007.

35

http://computationalmaps.org

[72] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial intelligence: a modern

approach. Prentice hall Englewood Cliffs, NJ, 1995.

[73] Karl Sims. Evolving 3D morphology and behavior by competition. In Rodney A. Brooks

and Pattie Maes, editors, Proceedings of the Fourth International Workshop on the Synthe-

sis and Simulation of Living Systems (Artificial Life IV), pages 28–39. MIT Press, Cambridge,

MA, 1994. URL http://www.mpi-sb.mpg.de/services/library/proceedings/

contents/alife94.html.

[74] Andrea Soltoggio, John A. Bullinaria, Claudio Mattiussi, Peter DÃŒrr, and Dario Floreano. Evolu-

tionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios. In Artificial

Life XI, pages 569–576, Cambridge, MA, 2008. MIT Press. URL http://www.alifexi.org/.

[75] Olaf Sporns. Network analysis, complexity, and brain function. Complexity, 8(1):56–60, 2002. URL

http://www3.interscience.wiley.com/cgi-bin/jissue/102525814.

[76] M. Srinivas and L.M. Paranaik. Learning neural network weights using genetic algorithms-improving

performance by search-space reduction. IEEE International Joint Conference on Neural Networks, 3:

2331–2336, 1991.

[77] Kenneth O. Stanley. Compositional pattern producing networks: A novel abstraction of development.

Genetic Programming and Evolvable Machines Special Issue on Developmental Systems, 2007. To

appear.

[78] Kenneth O. Stanley and Risto Miikkulainen. Efficient evolution of neural network topologies. In

Proceedings of the 2002 Congress on Evolutionary Computation (CEC’02), Piscataway, NJ, 2002.

IEEE. URL http://nn.cs.utexas.edu/keyword?stanley:cec02. In press.

[79] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.

Evolutionary Computation, 10:99–127, 2002. URL http://nn.cs.utexas.edu/keyword?

stanley:ec02.

[80] Kenneth O. Stanley and Risto Miikkulainen. Efficient reinforcement learning through evolving neu-

ral network topologies. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2002), San Francisco, 2002. Kaufmann.

[81] Kenneth O. Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9

(2):93–130, 2003. URL http://nn.cs.utexas.edu/keyword?stanley:alife03.

[82] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolutionary complex-

ification. Journal of Artificial Intelligence Research, 21:63–100, 2004. URL http://nn.cs.

utexas.edu/keyword?stanley:jair04.

[83] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolving neural network agents in the

NERO video game. In Proceedings of the IEEE 2005 Symposium on Computational Intelligence and

Games, 2005.

36

http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www.alifexi.org/
http://www3.interscience.wiley.com/cgi-bin/jissue/102525814
http://nn.cs.utexas.edu/keyword?stanley:cec02
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:alife03
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://nn.cs.utexas.edu/keyword?stanley:jair04

[84] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-time neuroevolution in the NERO

video game. IEEE Transactions on Evolutionary Computation Special Issue on Evolutionary Compu-

tation and Games, 9(6):653–668, 2005.

[85] Kenneth O. Stanley, Nate Kohl, and Risto Miikkulainen. Neuroevolution of an automobile crash

warning system. In Proceedings of the Genetic and Evolutionary Computation Conference, 2005.

URL http://nn.cs.utexas.edu/keyword?stanley:gecco05.

[86] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-

ing large-scale neural networks. volume 15, pages 185–212, Cambridge, MA, USA, 2009. MIT Press.

doi: http://dx.doi.org/10.1162/artl.2009.15.2.15202.

[87] N. V. Swindale. The development of topography in the visual cortex: A review of models. Network:

Computation in Neural Systems, 7:161–247, 1996. URL http://www.iop.org/EJ/S/3/251/

kxtGlJZKth350bhDwPkibw/article/0954-898X/7/2/002/ne62r2.pdf.

[88] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Comparing evolutionary and temporal differ-

ence methods in a reinforcement learning domain. In GECCO 2006: Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1321–1328, July 2006.

[89] Julian Togelius and Simon M. Lucas. Forcing neurocontrollers to exploit sensory symmetry through

hard-wired modularity in the game of cellz. In Proceedings of the IEEE Symposium on Computational

Intelligence and Games, pages 37–43, 2005.

[90] Alan Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society

B, 237:37–72, 1952.

[91] Michael Weliky, William H. Bosking, and David Fitzpatrick. A systematic map of direction preference

in primary visual cortex. Nature, 379:725–728, 1996.

[92] Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone. Evolving RoboCup keepaway

players through task decomposition. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 356–368, 2003. URL http://nn.cs.utexas.edu/keyword?whiteson:

gecco03.

[93] D. Whitley. Genetic algorithms and neural networks. In J. Periaux, M. Galan, and P. Cuesta, editors,

Genetic Algorithms in Engineering and Computer Science, pages 203–216. Wiley, Hoboken, NJ, 1995.

[94] Alexis Wieland. Evolving neural network controllers for unstable systems. In Proceedings of the

International Joint Conference on Neural Networks (Seattle, WA), pages 667–673. Piscataway, NJ:

IEEE, 1991.

[95] TT Yang, CC Gallen, BJ Schwartz, and FE Bloom. Noninvasive somatosensory homunculus mapping

in humans by using a large-array biomagnetometer. Proceedings of the National Academy of Sciences,

90(7):3098–3102, 1993.

37

http://nn.cs.utexas.edu/keyword?stanley:gecco05
http://www.iop.org/EJ/S/3/251/kxtGlJZKth350bhDwPkibw/article/0954-898X/7/2/002/ne62r2.pdf
http://www.iop.org/EJ/S/3/251/kxtGlJZKth350bhDwPkibw/article/0954-898X/7/2/002/ne62r2.pdf
http://nn.cs.utexas.edu/keyword?whiteson:gecco03
http://nn.cs.utexas.edu/keyword?whiteson:gecco03

[96] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

[97] Byoung-Tak Zhang and Heinz Muhlenbein. Evolving optimal neural networks using genetic algo-

rithms with Occam’s razor. Complex Systems, 7:199–220, 1993.

38

	Introduction
	Background
	Neuroevolution
	NeuroEvolution of Augmenting Topologies (NEAT)
	CPPNs and HyperNEAT

	Approach: Learning Regularities in Checkers
	Experiment
	Experimental Parameters

	Results
	Training Performance
	Generalization
	Typical Solutions
	Substrate Visualizations

	Discussion and Future Work
	Conclusions

