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a b s t r a c t

Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level
control problems such as pole balancing, vehicle control, and collision warning. However, certain types of
problems– such as those involving strategic decision-making –have remaineddifficult for neuroevolution
to solve. This paper evaluates the hypothesis that such problems are difficult because they are fractured:
The correct action varies discontinuously as the agent moves from state to state. A method for measuring
fracture using the concept of function variation is proposed and, based on this concept, two methods
for dealing with fracture are examined: neurons with local receptive fields, and refinement based on a
cascaded network architecture. Experiments in several benchmark domains are performed to evaluate
how different levels of fracture affect the performance of neuroevolution methods, demonstrating that
these twomodifications improve performance significantly. These results form a promising starting point
for expanding neuroevolution to strategic tasks.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The process of evolving neural networks using genetic algo-
rithms, or neuroevolution, is a promising new approach to solving
reinforcement learning problems. While the traditional method
of solving such problems involves the use of temporal difference
methods to estimate a value function, neuroevolution instead re-
lies on policy search to build a neural network that directly maps
states to actions. This approach has proved to be useful in a wide
variety of problems and is especially promising in challenging tasks
where the state is only partially observable, such as pole balancing,
vehicle control, collision warning, and character control in video
games (Gomez, Schmidhuber, & Miikkulainen, 2006; Kohl, Stan-
ley, Miikkulainen, Samples, & Sherony, 2006; Reisinger, Bahceci,
Karpov, & Miikkulainen, 2007; Stanley, Bryant, & Miikkulainen,
2005; Stanley & Miikkulainen, 2002, 2004a, 2004b). However,
despite its efficacy on such low-level control problems, other types
of problems such as concentric spirals, multiplexer, and high-
level decision making in general have remained difficult for neu-
roevolution algorithms to solve. A better understanding of why
neuroevolution works well on some problems – but not others –
would be useful in designing the next generation of neuroevolution
algorithms.
Most of the early work in neuroevolution was based on fixed-

topology methods (Gomez & Miikkulainen, 1999; Moriarty &
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Miikkulainen, 1996; Saravanan & Fogel, 1995; Whitley, Dominic,
Das, & Anderson, 1993; Wieland, 1991). This work was driven
by the simplicity of dealing with a single network topology and
theoretical results showing that a neural network with a single
hidden layer of nodes could approximate any function, given
enough nodes (Hornik, Stinchcombe, & White, 1989). However,
there are certain limits associated with fixed-topology algorithms.
Chief among those is the issue of choosing an appropriate topology
for learning a priori. Networks that are too large have extra
weights, each of which adds an extra dimension of search. On
the other hand, networks that are too small may have difficulty
representing solutions beyond a certain level of complexity.
Neuroevolution algorithms that evolve both topology and

weights (so-called constructive algorithms) were created to ad-
dress this problem (Angeline, Saunders, & Pollack, 1993; Gruau,
Whitley, & Pyeatt, 1996; Yao, 1999). While this approach met
with some success, it struggled to effectively evolve both topology
andweights simultaneously. One problemwas competing conven-
tions, wherein structures that evolve independently in different
networks must be joined together meaningfully in a crossover op-
eration. This difficulty was recently addressed with the introduc-
tion of historical markings, which provided a principled method
of identifying homologous sections of two different networks
(Stanley & Miikkulainen, 2002). This improvement allowed neu-
roevolution algorithms to compete with standard reinforcement
learning algorithms on a variety of problems.
However, certain types of problems – such as high-level

decision tasks – still remain difficult for neuroevolution algorithms
to solve. This paper presents the fractured problem hypothesis
as a possible explanation for this issue. By definition, fractured
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Fig. 1. The fractured decision space for one configuration of teammates and
opponents in the keepaway soccer task. The color at each point represents the set
of available receivers for a pass from that point. In order to performwell in this task,
the player must be able to model a fractured decision space. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

problemshave ahighly discontinuousmapping between states and
optimal actions. As an agent moves from state to state, the best
action that the agent can take changes frequently and abruptly. In
contrast, the optimal actions for a non-fractured problem change
slowly and continuously.
Many challenging supervised learning tasks are fractured,

such as multiplexer and concentric spirals. Importantly for
reinforcement learning, high-level decision tasks where an agent
must choose between several sub-behaviors are often fractured
as well. For example, Fig. 1 shows the possible actions that a
hand-coded keepaway soccer player considers when making a
passing decision during a game. The three teammates that could
receive the pass are indicated by darker circles; two opponents
who might intercept the pass are indicated by lighter circles with
crosses. The color at each point p represents the set of possible
teammates that could successfully receive a pass if the player were
at point pwith the ball. As the player moves around the field with
the ball, the set of possible teammates open for a pass changes
frequently and discontinuously, giving this task a fractured quality.
In addition, the nature of the fracture changes as both teammates
and opponents move. The fractured problem hypothesis posits
that neuroevolution performs poorly on such fractured problems
because the evolved neural networks have difficulty representing
such abrupt decision boundaries.
The first section of this paper introduces a quantitative defi-

nition of fracture built on the mathematical concept of function
variation. Next, related work on fracture in machine learning is
reviewed and two modified learning algorithms designed to solve
fractured problems are proposed. These algorithms are empiri-
cally compared to a state-of-the-art constructive neuroevolution
method called NEAT on five different fractured problems. The
results confirm the fractured domain hypothesis, showing that
standard neuroevolution techniques have difficulty perform-
ing well in fractured domains. The modified neuroevolution
algorithms, however, perform much better, suggesting that neu-
roevolution can scale to high-level decision tasks as well.

2. Fractured problems

What makes problems like multiplexer, concentric spirals,
and high-level decision tasks in general different from those
on which other neuroevolution algorithms have done so well?
This section proposes the hypothesis that these problems share
a common property: They possess a ‘‘fractured’’ decision space,
loosely defined as a space where adjacent states require radically
different actions In this section, the concept of function variation is
introduced as a way to more precisely quantify this idea. Section 5
will then describe several experiments to demonstrate that the
difficulty neuroevolution has with fractured problems stems from
an inability to generate networks with an appropriate amount of
variation.

2.1. Measuring complexity

For many problems (such as the typical control or reinforce-
ment learning benchmarks), the correct action for one state is sim-
ilar to the correct action for neighboring states, varying smoothly
and infrequently. In contrast, for a fractured problem, the correct
action changes repeatedly and discontinuously as the agent moves
from state to state. For example, in Fig. 1, the left half of the state
space in particular is quite fractured.
Clearly, the choice of state variables could changemany aspects

of a given problem, including the degree to which it is fractured.
For example, solving the concentric spirals problembecomesmuch
easier if the state space is represented in polar coordinates instead
of Cartesian coordinates. For this work, a problem is considered a
‘‘black box’’ that already has associated states and actions. In other
words, it is assumed that the definition of a problem includes a
choice of inputs and outputs, and the goal of the agent is to learn
given those constraints. Any definition of fracture then applies to
the entire definition of the problem.
This definition of fracture, while intuitive, is not very precise.

More formal definitions of complexity have been proposed
for learning problems, including Minimum Description Length
(Barron, Rissanen, & Yu, 1998; Chaitin, 1975), Kolmogorov com-
plexity (Kolmogorov, 1965; Li & Vitanyi, 1993), and Vapnik–
Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971).
Unfortunately, these metrics are often more suited to a theoretical
analysis than they are to practical usage. For example, Kolmogorov
complexity is a measure of complexity that depends on the
computational resources required to specify an object – which
sounds promising formeasuring problem fracture – but it has been
shown to be practically uncomputable (Maciejowskia, 1979).
An alternativeway tomeasure fracture is to consider the degree

towhich solutions to a problem are fractured. VC dimension at first
appears promising for this approach, since it describes the ability of
a possible solution to ‘‘shatter’’ a set of randomly-labeled training
examples into distinct groups. However, VC dimension is a general
method for measuring the capabilities of a model, and does not
apply to a specific problem. Furthermore, analyzing VC dimension
of neural networks is difficult; while results exist for single-layer
networks, it is much more difficult to analyze the networks with
arbitrary (and possibly recurrent) connectivity that constructive
neuroevolution algorithms generate (Mitchell, 1997).
A third possibility is described by Ho and Basu (2002),

who surveyed a variety of complexity metrics for supervised
classification problems and found a significant difference between
random classification problems and those drawn from real-world
datasets. In terms of measuring problem fracture, the most
promising of thesemetrics is a gauge of the linearity of the decision
boundary between two classes of data. However, these metrics are
tied to a two-class supervised learning setting, which makes them
less useful in a reinforcement learning setting, where the goal can
involve learning a continuous mapping from states to actions.
Therefore, in order to measure fracture, a more direct approach

is developed in this paper: measuring how much the actions
of optimal policies for the problem change from state to state.
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In a fractured problem, good policies repeatedly yield different
actions as the agent moves from state to state. Compared to the
alternatives described above, this definition of problem fracture is
easy to compute, because it turns out to be surprisingly simple to
measure how much policies change over a known and bounded
area.
Of course, this definition of problem fracture explicitly ties

fracture to optimal policies. Intuitively, a problem may be
considered difficult if the optimal policy has this fractured
property. However, some fractured problemsmight have relatively
unfractured policies that are quite close to optimal. Any learning
algorithm could perform quite well on these problems, regardless
of the amount of fracture in optimal policies. One simplifying
assumption made in this paper, therefore, is that there is a
relatively smooth continuum in both score and fracture between
poor policies and optimal policies. Several experiments presented
below suggest that this assumption is likely to be true in many
realistic problems.
Estimating problem fracture depends on measuring how the

actions of optimal policies change from state to state. The next
section describes how this measurement can be made by treating
policies as functions and measuring how much the functions
change using the concept of total variation.

2.2. Measuring variation of a function

The total variation of a function (Leonov, 1998; Vitushkin,
1955) measures how much a function (or policy) changes over
a certain interval. This section provides a technical description
of multidimensional variation (adapted from Leonov (1998))
followed by several illustrations of howvariation can be computed.
Consider an N-dimensional rectangular parallelepiped B =

Bba = Ba1...aNb1...bN
= {x ∈ RN : ai ≤ xi ≤ bi, ai < bi, i =

1, . . . ,N} and a function over this parallelepiped, z(x1, . . . , xN),
whose variation is to be measured. From Bochner (1959), Kamke
(1956), Leonov (1998) and Shilov and Gurevich (1967), the N-
dimensional quasivolume σN for z over a sub-parallelepiped Bβα of
B is defined as

σN(Bβα) =
1∑

v1=0

· · ·

1∑
vN=0

(−1)v1+···+vN z[x1, . . . , xN ], (1)

where xc is
xc = βc + vc(αc − βc).
Nowconsider a partitioning ofB into a set of sub-parallelepipeds

Π = {Bj}nj=1 where none of the individual sub-parallelepipeds Bj
intersect, and B1 + · · · + Bn = B. Let P be the set of all such parti-
tions for all n. The N-dimensional variation (or Vitali variation) of
the function z in the parallelepiped B is

VN(z, B) = sup
Π

{
n∑
j=1

|σN(Bj)| : Π = {Bj}nj=1 ∈ P

}
. (2)

Next, consider all of B’sm-dimensional coordinate faces Bi1,...,im
for 1 ≤ m ≤ N − 1 that pass through the point a ∈ B and are
parallel to the axes xi1 , . . . , xim where 1 ≤ i1 < · · · < im ≤ N .
For convenience, mark all of the m-dimensional faces of the form
Bi1,...,im by a number r (1 ≤ r ≤

(
N
m

)
= Nm). Each such face will

be denoted by B(m)r .

Definition. The total variation of the function z in the parallelepiped
B is the number

V (z, B) =
N−1∑
m=1

{
Nm∑
r=1

Vm(z, B(m)r )

}
+ VN(z, B). (3)

Several illustrative examples of this variation calculation
follow, starting with the one-dimensional case. The variation of a
Fig. 2. An example of how the variation of a 1-d function is computed. The absolute
value of the differences between adjacent points on the function (shown as dotted
lines) over the interval [a1, b1] are summed together to produce an estimate of the
total variation.

1-d function z(x1) over the range a1 ≤ x1 ≤ b1 is simply the sum
of the absolute value of the differences between adjacent values
of z between a1 and b1. When N = 1, the variation of z over the
interval B, V (z, B), effectively becomes V1(z, B), which is computed
by the summation in Eq. (2). For example, Fig. 2 shows a function z
that has been divided into five sections inside the interval [a1, b1].
The differences between adjacent points (each computed by Eq. (1)
and shown as dotted lines in Fig. 2) would be added together to
determine the variation for z on the parallelepiped B = Bb1a1 , which
is just the 1-d interval [a1, b1].
In Fig. 2, the 1-d parallelepiped B (or the interval [a1, b1]) is

divided into five sections by six points. Clearly, a different selection
of points could produce a different estimate of variation. For
example, if the variation calculation only used the first and last
points in the interval, then themiddle two ‘‘bumps’’ of the function
would be skipped over, producing a lower variation. The choice of
an appropriate set of points (referred to above as a partition Π of
B) is dealt with in Eq. (2). To compute the VN(z, B), a partition Π
of B should be chosen such that it maximizes VN(z, B). It is easy to
see that as the discretization of the partition becomes increasingly
fine, the variationwill not decrease. In fact, when the discretization
of the partition becomes infinitely small, the calculation of VN(z, B)
in the 1-d case turns into

V1(z, Bb1a1) =
∫ b1

a1
|z(x)|dx. (4)

Infinitely-fine partitionings of B are fine for mathematicians,
but practically speaking, computational resources will limit the
degree towhich it is possible to discretize B. For thework described
here, the finest possible discretization Π̂ of B is chosen given the
limited computational resources available. This means that only
one partition Π̂ is considered, and the supremum in Eq. (2) is
effectively ignored.
The computation of multidimensional variation is more in-

volved than the 1-d case. To compute the variation for a 2-d func-
tion z(x1, x2)on theparallelepipedB = B

b1,b2
a1,a2 , three different terms

are computed and summed together. Each of these terms is meant
to measure the variation in a specific direction on B, and corre-
sponds to a ‘‘face’’ of B (shown in Fig. 3):

• B(1)1 : the first 1-d face of B, variation of z as x1 changes;
• B(1)2 : the second 1-d face of B, variation of z as x2 changes; and
• B: the only 2-d face of B is B itself, variation of z as both x1 and
x2 change.

To compute the variations for the two 1-d faces of B, V1(z, B
(1)
1 )

and V1(z, B
(1)
2 ), a calculation very similar to the one described

above can be used: the variation is simply the sum of the
absolute values of the differences between adjacent values of the
function. Each difference between adjacent points α and β is
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Fig. 3. The three faces (two 1-d faces and one 2-d face) of a 2-d parallelepiped
that pass through the point (a1, a2). Measuring variation on each face is meant to
capture how the function changes in different directions.

σN(Bβα), represented by Eq. (1). The 2-d version of Eq. (1) involves
measuring four points, instead of two. For example, when N = 2,
the quasivolumes of the function z over the parallelepipeds Bβ1,β2α1,α2 ,
Bβ1α1 , and B

β2
α2 are

σ2(Bβ1,β2α1,α2
) = z(β1, β2)− z(β1, α2)− z(α1, β2)+ z(α1, α2),

σ1(Bβ1α1) = z(β1, a2)− z(α1, a2),

σ1(Bβ2α2) = z(a1, β2)− z(a1, α2).

It should be noted that there are actually four 1-d faces of the
2-d parallelepiped B, but only two of the faces are used in this
variation calculation, i.e. those that are on the ‘‘lower’’ edge of B
(denoted by those faces that pass through the point a ∈ B).
The next section continues this discussion of function variation

with a description of how total variation can be measured in the
context of neuroevolution.

2.3. Measuring variation of a neural network

A neural network produced by a neuroevolution algorithm can
be thought of as a function that maps states to actions. Because the
variation calculation does not care what form the function takes
– it only requires input and output pairs from the function – it is
straightforward to calculate the variation of a neural network.
The first step is to select a parallelepiped P of the input space

overwhich variationwill bemeasured. In a reinforcement learning
setting, it is frequently the case that the inputs have already been
truncated or scaled to a certain range, effectively defining P . For
example, an agent controlling a racecar might receive an angular
input describing the location of the nearest opponent. This input
can be scaled into the range [−π, π], defining P for that dimension.
Different dimensions of P can have different bounds.
The next step is to quantize P into some partition Π . As

described above, the ideal partition Πoptimal contains infinitely
small slices of P . However, a finite amount of computation limits
how finely P can be discretized. Practically speaking, P is quantized
into Π̂ , which is the finest uniform discretization of P that is
possible given the computational resources that are available.
The definition of P and Π̂ determine a finite set of points from

the input space. The output of the neural network is thenmeasured
and stored for each of these input points. After measuring these
values, a series of summations over each possible combination
of dimensions of the input space (described by Eqs. (1)–(3))
Fig. 4. A surprisingly small solution that was evolved by the NEAT neuroevolution
to solve the non-Markov double pole balancing problem. NEAT was able to take
advantage of recurrent connections to generate a parsimonious solution to this
problem.

determines the variation of the network. For networks with
multiple outputs, this work assumes that the total variation of
the network is the average of the multiple independent variation
calculations for each output. This assumption has proven effective
for the experiments below; however an interesting avenue for
future work involves closer examination of this assumption.
It should be noted that this definition of variation assumes

that the network represents a function. In some applications of
neuroevolution, evolved networks are not functions in the strictest
sense; they map states to actions, but the experimenter does not
reset node activation levels between successive states. Evolved
networks used in this manner are less similar to state-action
functions and more akin to dynamical systems with internal state
over time that happen to pick actions.With such networks, it is not
meaningful to simply query a network for its chosen action given
a single state. Instead, the network must be evaluated over a set
of states, starting from a specific initial state, while maintaining
activation levels of individual nodes in the network across state
transitions. This approach can be used to great advantage in non-
Markov problems. For example, in the non-Markov pole-balancing
task, an evolved recurrent networkwas found to use such recurrent
connections to compute the derivative of the pole angle (Stanley &
Miikkulainen, 2002). This information about the direction of pole
movement proved useful in solving the task quickly with a small
network (Fig. 4).
It is difficult to measure the variation of a network that is not as

a function. Instead of simply querying the network for its output at
a given state, the entire succession of states that lead up to the state
in question must be queried in order—and it is still not clear that
such an approach would yield appropriate values for a variation
computation. Because of this restriction, this paper focuses on
learning state-action mappings for Markov problems. Fortunately,
there are many interesting problems that are Markov or that can
be made Markov with additional state variables.
Even in Markovian tasks, the recurrent topologies that con-

structive neuroevolution algorithms produce may be useful. The
activation process for these networks starts from a uniform unac-
tivated state where only the input nodes have activation values.
Values from the input nodes are propagated through the network
until all output nodes have received some input value. The network
is then activated κ times, where each activation allows values from
the input nodes to propagate one level deeper into the network.
The input nodes maintain their output over all κ activations. This
repeated activation scheme allows recurrent connections and
values delayed during propagation to affect the computation of an
action for a state.
Using this procedure, it is possible to evaluate the variation

of any neural network produced by neuroevolution in Markovian
tasks. This calculation provides a quantitative description of the
amount of fracture that a learning algorithm is capable ofmodeling
for a given problem. By measuring the variation of good policies,
this metric can also be used to estimate the difficulty of a given
problem.
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Fig. 5. A comparison of how (a) an RBF network and (b) a sigmoid-node network
(b) might isolate two specific areas of a 2-d input space. The local functionality of
the RBF network can identify comparable spaces using far fewer parameters.

The intuitive concept that fracture makes a problem difficult
is familiar to the machine learning community. The next section
describes previous approaches to solving fractured problems.
These insights are then utilized in Section 4 to develop two new
neuroevolution methods for such problems.

3. Related work

In order to perform well in a fractured problem, a learning
algorithm must be able to generate representations that capture
local features of the problem. For example, after the algorithm
experiences a new state in the environment, it needs to associate
a specific action for that state. If the problem is fractured, it may
not be useful to generalize from the actions of nearby states.
Furthermore, any large-scale changes the algorithm may attempt
to make could disrupt the individual actions tailored for other
states. Therefore, the algorithmmust be able tomake local changes
to isolate that particular state from its neighbors and associate the
correct actionwith it. This concept of localized change – as opposed
to large-scale, global change – has also appeared before in many
parts of the machine learning community, and will serve as the
starting point for the proposed methods as well.

3.1. Supervised learning

One promising method for learning local features is radial basis
function (RBF) networks (Gutmann, 2001; Moody & Darken, 1989;
Park & Sandberg, 1991; Platt, 1991). RBF networks originated in
the supervised learning community, and are usually described as
neural networkswith a single hidden layer of basis-function nodes.
Each of these nodes computes a function (usually a Gaussian) of the
inputs, and the output of the network is a linear combination of all
of the basis nodes. RBF networks are usually trained in two stages:
The locations and sizes of the basis functions are determined,
and then the parameters that combine the basis functions are
computed. Fig. 5 shows a simple example of how an RBF network
can isolate local areas of the input space with fewer mutable
parameters than a sigmoid-node neural network. For an overview
of RBF networks in the supervised learning literature, see Ghosh
and Nag (2001).
The local processing in RBF networks has proved to be

useful in many problems, frequently outperforming other function
approximation techniques (Lawrence, Tsoi, & Back, 1996; Wedge,
Ingram,McLean,Mingham, & Bandar, 2005). Such local approaches
have been particularly useful on supervised learning problems
that might be considered fractured, like the concentric spirals
classification task (Chaiyaratana & Zalzala, 1998). This success
suggests that an RBF approach could be useful for fractured
reinforcement learning problems as well. Of course, supervised
RBF algorithms take advantage of labeled training data when
deciding how to build and tune RBF nodes, and such data is
not available in reinforcement learning. Furthermore, most of
the network architectures proposed in supervised RBF algorithms
are fixed before learning or are constrained to be highly regular
(e.g. a single hidden layer of RBF nodes). This constraint could
limit the ability of the learning algorithms to find an appropriate
representation for the problem at hand. Moreover, it may be
possible to evolve the RBF networks and thereby construct
complex networks for fractured problems.
Another interesting idea for generating locality in the super-

vised learning community is deep learning (Hinton & Salakhutdi-
nov, 2006). The idea is that neural networks with a large number
of nodes between input and output are able to form progressively
high-level and abstract representations of input features and could
generate fractured decision boundaries as well (Bengio, 2007;
LeCun & Bengio, 2007). However, it is difficult to train deep net-
works with standard techniques like backpropagation because the
error signal diminishes quickly over the many connections. In or-
der to solve this problem, deep learning networks are pre-trained
using unsupervised methods to cluster input patterns into dis-
tinct groups. This pre-training sets the weights of the network
close to good values, which then allows backpropagation to run
successfully.
The arguments for deep learning are complementary to those

for constructive neuroevolution; both approaches result in com-
plicated network structures that can hold sophisticated represen-
tations of input data, as opposed to single-layer architectures. The
two approaches diverge in that the networks are not constructed
in deep learning and that the second stage of deep learning relies
on supervised feedback. However, it would be possible to incor-
porate deep learning’s initialization of network weights into a
neuroevolution algorithm, and thereby bias the search towards
local solutions.

3.2. Reinforcement learning

In contrast to the approaches described above, reinforcement
learning algorithms are designed to solve problems where labeled
training data is unavailable. The idea of local processing has also
proved to be effective for value-function reinforcement learning
algorithms. Such methods frequently benefit from approximating
value functions using highly local function approximators like
tables, CMACs, or RBF networks (Kretchmar & Anderson, 1997;
Li & Duckett, 2005; Li, Martinez-Maron, Lilienthal, & Duckett,
2006; Peterson & Sun, 1998; Stone, Kuhlmann, Taylor, & Liu,
2006; Sutton, 1996; Taylor, Whiteson, & Stone, 2006). For
example, Sutton used a CMAC (a function approximator consisting
of multiple overlapping receptive fields, known for its ability
to generalize locally) successfully on a set of problems that
had previously proved difficult to solve using global function
approximators (Sutton, 1996). Asada et al. improved the learning
performance of a value-function algorithm by grouping local
patches of the state space together that shared the same
action (Asada, Noda, & Hosoda, 1995). More recently, Stone et al.
found that in the benchmark keepaway soccer problem, an RBF-
based value-function approximator significantly outperformed a
normal neural network value-function approximator (Stone et al.,
2006). Such results suggest that local behavioral adjustments could
be useful for policy-search reinforcement learning algorithms –
like neuroevolution – as well.

3.3. Evolutionary computation

Evolutionary approaches to learning using the cascade corre-
lation architecture have proven to be highly effective on certain
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benchmark problems like concentric spirals (Potter & Jong, 2000;
Tulai & Oppacher, 2002). Although the only concept that these
approaches borrow from cascade correlation is the network ar-
chitecture (i.e. the process of training hidden nodes to correlate
with pre-existing error is not used), this topology restriction alone
results in good performance on the concentric spirals problem. It
is possible that this is a good approach to fractured problems in
general.
Learning classifier systems (LCS) are another family of algo-

rithms that use local processing to solve reinforcement learn-
ing problems. LCS approximate functions with a population of
classifiers, each of which is responsible for a small part of the input
space. A competitive contributory mechanism encourages classi-
fiers to cover as much space as possible, removing redundant clas-
sifiers and increasing generalization. A number of LCS algorithms
have been developed that vary both in how the classifiers cover
the input space and in how they approximate local functions (Bull
& O’Hara, 2002; Butz, 2005; Butz & Herbort, 2008; Howard, Bull,
& Lanzi, 2008; Lanzi, Loiacono, Wilson, & Goldberg, 2005, 2006;
Wilson, 2002, 2008). Of particular interest are approaches like
those used in Neural XCSF, which use a fixed-topology or variable-
size single-layer neural network to define both conditions and
actions of a simple LCS. Although early work examining the role of
constructive neural networks in LCS has been promising (Howard
et al., 2008), the full potential of a combination of LCS and construc-
tive neuroevolution has not yet been explored.
Third, several hybrid algorithms have been proposed that

use various flavors of genetic algorithms to reduce the amount
of required human expertise in supervised learning, usually by
automatically determining the number, size, and location of basis
functions (Angeline, 1997; Billings & Zheng, 1995; Chaiyaratana
& Zalzala, 1998; Gonzalez et al., 2003; Guillen et al., 2007, 2006;
Guo, Huang, & Zhao, 2003; Maillard & Gueriot, 1997; Sarimveis,
Alexandridis, Mazarakis, & Bafas, 2004; Whitehead & Choate,
1996). These approaches still rely on supervised training data, at
least in part, and typically are also constrained to produce single-
layer network architectures.
For instance, the Global–Local ANN (GL-ANN) architecture

proposed by Wedge et al. first trains a single-layer sigmoid-
node network, then constructively adds RBF nodes, and finally
adjusts all parameters of the network (Wedge, Ingram, McLean,
Mingham, & Bandar, 2006). Similarly, the Structural Modular
Neural Networks approach uses a genetic algorithm to evolve
single-layer networks with both sigmoid and RBF nodes (Jiang,
Zhao, & Ren, 2003). These approaches are intriguing in that they
combine global approximation with sigmoid nodes with the local
adjustments of RBF nodes. The resulting network architectures are
still quite regular when compared to the unbiased architectures
that constructive neuroevolution algorithms can discover.
A fourth area of of related work is genetic programming

(GP), where Rosca developed methods to allow GP to decompose
problems into useful hierarchies and abstractions (Rosca, 1997). To
the extent that the fracture for a given problem is organized in a
hierarchicalmanner, the adaptive representations could be used to
bias search towards small, repeatedmotifs. Of course, the notion of
reusable modules of code is easier to define for genetic programs
than it is for neural networks. In order to take advantage of this
work in GP, it is necessary to understand how modular neural
networks can be developed, but a cascaded structure is a possible
start.
The concept of locality appears in many fields other than

machine learning. One particularly interesting area is the study
of human cognition and cognitive modeling. Although not the
primary focus of this work, it is fascinating and potentially useful
to consider the role of locality in human cognition. In particular,
several papers in this special issue show that the ability to
make local changes to cognitive processes is biologically plausible,
whether viewed as attractors in the prefrontal cortex (Levine,
2009), division of general knowledge into discrete chunks (Kozma
& Freeman, 2009), or the representation of language in the brain
using different states (Perlovsky, 2009).
The next section describes how the ideas above might

be incorporated into current neuroevolution algorithms. The
approach is to create modified versions of a state-of-the-art
neuroevolution algorithm, as will be described next.

4. Utilizing locality in neuroevolution

One of the most promising neuroevolution algorithms to
date is the Neuroevolution of Augmenting Topologies (NEAT)
algorithm (Stanley & Miikkulainen, 2002, 2004a). This section
reviews the NEAT algorithm and describes two modifications to
NEAT designed to improve its performance in fractured problems
by biasing or constraining the search for network topologies.
In the following section, these modifications will be compared
empirically to NEAT and a linear baseline algorithm on several
fractured problems.

4.1. The NEAT neuroevolution method

NEAT is designed to solve difficult reinforcement learning
problems by automatically evolving network topology to fit the
complexity of the problem. NEAT combines the usual search for
the appropriate network weights with complexification of the
network structure. It starts with simple networks and expands the
search space only when beneficial, allowing it to find significantly
more complex controllers than fixed-topology evolution. These
properties make NEAT an attractive method for evolving neural
networks in complex tasks.
NEAT is based on three key ideas. First, evolving network

structure requires a flexible genetic encoding. Each genome in
NEAT includes a list of connection genes, each of which refers to
two node genes being connected. Each connection gene specifies
the in-node, the out-node, the weight of the connection, whether
or not the connection gene is expressed (an enable bit), and an
innovation number, which allows finding corresponding genes
during crossover. Mutation can change both connection weights
and network structures. Connection weights are mutated in a
manner similar to any NE system. Structural mutations, which
allow complexity to increase, either add a new connection or a new
node to the network. Through mutation, genomes of varying sizes
are created, sometimes with completely different connections
specified at the same positions.
Each unique gene in the population is assigned a unique

innovation number, and the numbers are inherited during
crossover. Innovationnumbers allowNEAT todo crossoverwithout
the need for expensive topological analysis. Genomes of different
organizations and sizes stay compatible throughout evolution, and
the problem of matching different topologies (Radcliffe, 1993) is
essentially avoided.
Second, NEAT speciates the population so that individuals com-

pete primarily within their own niches instead of with the popu-
lation at large. This way, topological innovations are protected and
have time to optimize their structure before they have to compete
with other niches in the population. The reproduction mechanism
for NEAT is explicit fitness sharing (Goldberg & Richardson, 1987),
where organisms in the same speciesmust share the fitness of their
niche, preventing any one species from taking over the population.
Third, unlike other systems that evolve network topologies

and weights (Gruau et al., 1996; Yao, 1999), NEAT begins with
a uniform population of simple networks with no hidden nodes.
New structure is introduced incrementally as structural mutations
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Fig. 6. An example of the network topology evolved by the RBF-NEAT algorithm.
Radial basis function nodes, initially connected to inputs and outputs, are provided
as an additional mutation to the algorithm. These nodes allow evolution to utilize
local structures where they may be appropriate, e.g. in fractured problems.

occur, and the only structures that survive are those that are found
to be useful through fitness evaluations. In this manner, NEAT
searches through a minimal number of weight dimensions and
finds the appropriate level of complexity for the problem.
These three ideas allow NEAT to find surprisingly small solu-

tions to a variety of reinforcement learning problems. However,
NEAT’s ability to solve fractured problems is limited. This section
continues with descriptions of two modified versions of NEAT –
inspired by the related literature – that are designed to perform
better on fractured problems. Both of these approaches are essen-
tially extensions to the standard NEAT algorithm that are designed
to improve performance on fractured problems by either biasing
or constraining the types of network structure that NEAT explores
towards more local representations.

4.2. The RBF-NEAT algorithm

The first algorithm, called RBF-NEAT, extends NEAT by intro-
ducing a new topologicalmutation that adds a radial basis function
node to the network. Like NEAT, the algorithm starts with a min-
imal topology, in this case consisting of a single layer of weights
connecting inputs to outputs, and no hidden nodes. In addition to
the usual ‘‘add link’’ and ‘‘add node’’ mutations in NEAT, with prob-
ability ε = 0.05 an ‘‘add RBF node’’ mutation occurs (Fig. 6). Each
RBF node is activated by an axis-parallel Gaussian with variable
center and size. All free parameters of the network, including RBF
node parameters and link weights, are determined by a genetic al-
gorithm similar to the one in NEAT (Stanley &Miikkulainen, 2002).
RBF-NEAT is designed to evaluate whether local processing

nodes can be useful in policy-search reinforcement learning
problems. The addition of a RBF node mutation provides a
bias towards local-processing structures, but the normal NEAT
mutation operators still allow the algorithm to explore the space
of arbitrary network topologies.

4.3. The Cascade-NEAT algorithm

The search for network topologies can also be biased towards
fractured solutions by constraining the search to cascaded
structures. The cascade architecture (shown in Fig. 7) is a regular
formof network architecturewhere each hiddennode is connected
to inputs, outputs, and all hidden nodes to its left.
Like NEAT, Cascade-NEAT starts from a minimal network

consisting of a single layer of connections from inputs to outputs.
Instead of the normal NEAT mutations of ‘‘add node’’ and ‘‘add
connection’’, Cascade-NEAT uses an ‘‘add cascade node’’ mutation:
With probability ε = 0.05, a hidden node is added to the
network. This hidden node has inputs from all inputs and existing
hidden nodes in the network, and is connected to all outputs.
In addition, whenever a hidden node is added, all pre-existing
Fig. 7. An example of a network constructed by Cascade-NEAT. Only connections
associated with the most recently added hidden node are evolved. Compared to
NEAT and RBF-NEAT, Cascade-NEAT constructs networks with a regular topology,
where successively more refined decision boundaries are produced at each
cascaded level.

network structure is frozen in place. Thus, at any given time, the
only mutable parameters of the network are the connections that
involve the most recently-added hidden node.
Cascade-NEAT adds a considerable constraint to the search for

appropriate network topologies, given thewide variety of network
structures that the normal NEAT algorithm examines. The next
section examines the effect of this constraint – and the effect of
the bias in RBF-NEAT – on a series of fractured problems.

5. Empirical analysis

In order to test the hypothesis that biasing and constraining
topology search to local solutions is beneficial in fractured
problems, RBF-NEAT and Cascade-NEAT were compared with
the standard NEAT algorithm on several different benchmark
problems. Also included was a baseline algorithm consisting of
NEATwithout any structuralmutation operators, i.e. amethod that
evolves a single layer of weights with no hidden nodes. This linear
combination of input features is the same initial network topology
that NEAT starts with, and is included to provide a sense of scale to
the following graphs.

5.1. Generating maximal variation

The first experiment was designed to evaluate how much
variation these different learning algorithms can produce in an
unrestricted setting. A problem was created where the only goal
was to produce a ‘‘solution’’ that contained as much variation as
possible.
Three versions of this problem were created, each with a

different number (one, two or three) of inputs. The input space for
each problem was uniformly divided into roughly 200 points. An
evaluation consisted of evaluating a network on a each of these
points and noting the value that was produced from the single
output. The score for a network was the total variation of the
discretized function that the network represented, calculated in a
manner described in Section 2.3.
The results from this experiment are shown in Fig. 8. Cascade-

NEAT is able to produce significantly higher variation than
other algorithms. Interestingly RBF-NEAT produces relatively high
variation for a single input but less as the number of inputs
increases, suggesting that RBF-NEAT is mainly effective in low-
dimensional settings.

5.2. Function approximation

The general function approximation problem requires the
learning algorithm to evolve neural networks to approximate fixed
1-d functions. Each network is evaluated on a series of numbers
representing the input to the function. The network state is cleared
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Fig. 8. Performance of four learning algorithms on a problem where the goal is to
produce a solution with as much variation as possible. When the dimensionality
is small, RBF-NEAT does well, but in general, Cascade-NEAT is able to produce the
highest amount of variation.

before each new input is presented, then the input is fed into
the network for κ = 10 activations. The squared error between
the output of the network and the target function is recorded
for a series of τ = 100 input points. After the network has
been evaluated on all τ input points for a function, the mean
squared error is inverted and used as a fitness signal. Function
approximation is a good test problembecause it is easy to visualize,
and because it is straightforward to calculate the variation of the
optimal solution.
The functions to be approximated follow the form sin(αx). The

six different versions of this sine function (shown in Fig. 9) have
increasing variation, corresponding to larger values of α.
Fig. 10 shows the performance of NEAT, Cascade-NEAT, RBF-

NEAT, and the linear baseline algorithm (each averaged over 100
runs) on each of these six function approximation problems. The
horizontal position of each pair of points indicates the variation of
the optimal solution for that problem.
As variation increases, the score for NEAT drops, confirming the

hypothesis that variationmeasures howdifficult the problem is for
NEAT. Although all algorithms perform similarly in the problem
with the least amount of variation, a marked difference appears as
variation increases. The Cascade-NEAT and RBF-NEAT algorithms
generate scores that are nearly twice as good as the normal
NEAT algorithm (using the linear version of NEAT as a baseline),
supporting the hypothesis that incorporating a locality bias into
network construction makes learning high-variation problems
easier.

5.3. Concentric spirals

Concentric spirals is a classic supervised learning benchmark
task often used to evaluate the Cascade Correlation architecture.
Originally proposed byWieland (Potter & Jong, 2000), the problem
consists of correctly identifying points from two intertwined
spirals. Solving this problem involves repeatedly tagging nearby
regions of the input space with different labels, which makes the
decision task fractured.
Fig. 10. Results for the sine wave function approximation problem. Performance
drops as the amount of variation required to solve the problem increases, but RBF-
NEAT and Cascade-NEAT outperform the standard NEAT algorithm significantly
(p > 0.95).

Fig. 11. Seven versions of the concentric spirals problem that vary in the degree to
which the two spirals are intertwined. The colored dots indicate the discretization
used to generate data from each spiral. As the spirals become increasingly
intertwined, the variation of the optimal policy increases. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

In order to examine the effect of fracture on NEAT, seven
semi-supervised versions of increasing difficulty of the concentric
spirals problem of were created (Fig. 11). As the spirals become
increasingly intertwined, the variation of the optimal policy
increases. Note that this version of the problem differs from
the supervised version, where a learner receives feedback about
individual points. This modified version of concentric spirals
– like all the domains examined in this paper – is cast as a
reinforcement learning problem, which means the learning agent
receives dramatically less information about its performance. In
this problem, the only feedback an agent receives is the number
of points properly classified. This makes the task of correctly
identifying points on the two spirals much more difficult.
Fig. 12 shows the score for the four learning algorithms (NEAT,

Cascade-NEAT, RBF-NEAT, and the linear baseline algorithm)
averaged over 25 runs. Again, scores decrease as variation
increases, showing that the variation of each problem correlates
closely with problem difficulty. However, Cascade-NEAT and RBF-
NEAT are able to offer significant increases in performance over
that of the standard NEAT algorithm.
Fig. 13 shows the output of the best evolved solutions from

each learning algorithm for two of these problems. NEAT is able
to find an approximate solution for the simpler problem, but is
Fig. 9. Six versions of a sine wave function approximation problem. Sine waves with higher frequency have higher variation, making them harder to approximate.
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Fig. 12. Average score for the four learning algorithms on seven versions of the
concentric spirals problem. As the variation of the problem increases, performance
falls, but Cascade-NEAT and RBF-NEAT are able to significantly outperform the
standard NEAT algorithm (p > 0.95).

Fig. 13. Output of the best solutions found by each learning algorithm for two
versions of the challenging semi-supervised concentric spirals problem. Cascade-
NEAT and RBF-NEAT do a much better job than NEAT at generating the subtle
variations required by the more complicated version of the problem.

unable to discover a network that can represent the variation
required to do well on the more complex problem. The solutions
that Cascade-NEAT and RBF-NEAT generate, while not perfect, are
able to encompass more variation than those discovered by NEAT.

5.4. Multiplexer

The multiplexer is a challenging benchmark problem from the
evolutionary computation community. Performing well on this
problem requires an agent to learn to split the input into address
and data fields, then decode the address and use it to select a
specific piece of data. For example, the agent might receive as
input six bits of information, where the first two bits denote an
address and the remaining four bits represent the data field. The
two address bits indicate which one of the four data bits should
be set as output. The binary representation and the division of the
input into two separate logical groups suggests intuitively that the
multiplexer problem is fractured.
Four experiments were performed with increasingly difficult

versions of the problem, which are shown in Fig. 14. These four
problems differ in the size of the input, ranging from three (one
address bit and two data bits) to nine (three address bits and six
data bits). Note that not all values for the third address bit are used
for the two largest versions of the problem. As the number of inputs
increases, the variation of the optimal solution also increases.
This increase allows the impact of variation on performance to be
measured.
Each version of the multiplexer problem effectively defines

a binary function from the input bits to a single output bit.
During learning, every possible combination of inputs (given the
constraints on address and data bits) was presented to each
network in turn. As before, network state was cleared between
consecutive inputs. The fitness for each network was the inverted
mean squared error over all inputs.
Fig. 15 shows the performance of NEAT, Cascade-NEAT, RBF-

NEAT, and the linear baseline algorithm on these multiplexer
problems. As in previous sections, each group of four vertical points
represents one of the problems. While NEAT is able to perform
well on the simplest multiplexer, its performance falls off quickly
as the required variation increases. Interestingly, RBF-NEAT does
not offer significant increases in performance over regularNEAT for
any other versions. However, Cascade-NEAT is able to outperform
all other algorithms significantly.

5.5. Keepaway soccer

The final empirical comparison expands the benchmark com-
parisons above to a high-level decision-making task. The four
learning algorithms described above were evaluated on a version
of the 4-versus-2 keepaway soccer problem (Stone et al., 2006;
Whiteson, Kohl, Miikkulainen, & Stone, 2005). Keepaway soccer is
a challenging high-level decision task with continuous input. The
goal is for the four keepers to prevent the two takers from control-
ling the ball in a bounded area. One feature that makes this partic-
ular version of keepaway difficult is that the takers can move five
times faster than the keepers, which forces the keepers to develop
a robust passing strategy instead of merely running with the ball.
Fig. 16 shows a typical initial state of a keepaway game.
The takers behave according to a fixed, hand-coded algorithm

that focuses on covering passing lanes and converging on the
ball. The four keepers are controlled by a mix of hand-coded and
evolved behaviors. When a game starts, the keeper nearest the
ball is made ‘‘responsible’’ for the ball. If this responsible keeper
is not close enough to the ball, it executes a pre-existing intercept
behavior in an effort to get control of the ball. The keepers not
responsible for the ball execute a pre-existing get-open behavior,
designed to put the keepers in a good position to receive a pass.
However, when the responsible keeper has control of the ball

(defined by being within φ meters of the ball) it must choose
between executing a pre-existing hold behavior or attempting a
pass to one of its three teammates. The goal of learning is to make
the appropriate decision given the state of the game at this point.
To make this decision, the network controlling the responsible

keeper receives ten continuous inputs. The first input describes
the keeper’s distance from the center of the field. The network
also receives three inputs for each teammate: the distance to that
teammate, the angle between that teammate and the nearest taker,
and the distance to that nearest taker. All angles and distances are
normalized to the range [0, 1]. The networkhas one output for each
possible action (hold, or pass to one of the three teammates). The
output with the highest activation is interpreted as the keeper’s
action.
If the responsible keeper chooses to pass, the keeper receiving

the pass is designated the responsible keeper. After initiating the
pass, the original keeper begins executing the get-open behavior.
Each network was evaluated from τ = 30 different randomly-

chosen initial configurations of takers and keepers. In each
configuration, the ball is initially placed near one of the keepers.
Each of the players executes the appropriate hand-coded behavior,
and the current network is used to select an action when the
keeper responsible for the ball needs to choose between holding
and passing. The game is allowed to proceed until a timeout is
reached, the ball goes out of bounds, or a taker achieves control
of the ball (by getting within φ meters of it). The score for a single
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Fig. 14. Four versions of themultiplexer problem, where the goal is to use address bits to select a particular data bit. For (c) and (d), not all of the values for the third address
bit were used. The amount of variation required to solve the multiplexer problem increases as the number of total inputs (address bits plus data bits) increases, making the
problem harder.
Fig. 15. Performance of the four learning algorithms on four versions of the
multiplexer problem. Cascade-NEAT is able to dramatically improve performance
over the other algorithms (p > 0.95).

Fig. 16. A starting configuration of players for the 4-versus-2 keepaway soccer
problem. The four keepers (the darker players) attempt to keep the ball (shown
in white) away from the two takers (the lighter players with crosses). Keepaway is
a challenging high-level strategy problem with continuous inputs and a fractured
decision space.

game is the number of timesteps that the game takes. The overall
score for the network is the sum of the scores for all τ games.
Fig. 17. Comparison of the four learning algorithms and a hand-coded solution
in the keepaway soccer problem. While NEAT is able to slightly improve on the
hand-coded behavior, Cascade-NEAT offers the best performance by awidemargin.
Animations of the best learned policies can be seen at nn.cs.utexas.edu/?fracture.

Fig. 17 shows a comparison of the four learning algo-
rithms (NEAT, Cascade-NEAT, RBF-NEAT, and the linear baseline
algorithm) as well as a hand-coded solution for the keepaway soc-
cer problem. NEAT was able to offer moderate improvement over
the hand-coded policy, but Cascade-NEAT offers the highest per-
formance by a wide margin. Animations of the best learned and
hand-coded policies can be seen at nn.cs.utexas.edu/?fracture.
One method of varying the amount of fracture in the keepaway

domain is to change τ , the number of initial states on which
each network is evaluated. Reducing the number of starting states
should reduce variation, making the problem easier to solve.
Intuitively, this has the effect of reducing the amount of area over
which the networkmust generalize, resulting in a simpler function
that the network must approximate. As the number of required
states decreases, it should become easier to solve the problemwith
a relatively simple mapping from states to actions. Fig. 18 shows
the effect of reducing the number of starting states on the four
learning algorithms.
In general, versions of the keepaway problem with fewer

starting states are easier to solve. However, as the number of
starting states increases, the superior performance of Cascade-
NEAT becomes more pronounced. This result supports the
hypothesis that problems become increasingly fractured as the
scope of learning increases, and that Cascade-NEAT is much more
adept at solving these fractured problems.

6. Discussion and future work

The experiments in this paper confirm thehypothesis thatNEAT
has difficulty in solving fractured domains. When the amount

http://nn.cs.utexas.edu/%3Ffracture
http://nn.cs.utexas.edu/%3Ffracture
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Fig. 18. Measuring the effect of the number of starting states on learning
performance. As the number of starting states increases, the relative performance
gain provided by Cascade-NEAT increases. This result suggests that the utility of
Cascade-NEAT increases with problem fracture, making it a good candidate for
learning in high-level decision-making tasks.

of variation required to solve a problem is small, NEAT does
well. But as the required variation increases, NEAT’s performance
falls off quickly. However, biasing and constraining network
construction towards local structure is found to dramatically
improve performance on highly-fractured problems. Both RBF-
NEAT and Cascade-NEAT offer improved performance on all
problems.
Interestingly, RBF-NEAT works best in low-dimensional

settings. This result is understandable—as the number of inputs
increases, the curse of dimensionality makes it increasingly diffi-
cult to set all of the parameters correctly for each basis function.
This limitation suggests that a bettermethod of incorporating basis
functions into a constructive algorithm would be to situate those
basis nodes on top of the evolved network structure. The lower lev-
els of such a network can be thought of as transforming the input
into a high-level representation. The high-level representation is
likely to be of smaller dimensionality than the original represen-
tation and basis nodes operating at this level may be effective at
selecting useful features.
A related avenue for futurework involves the possible combina-

tion of RBF-NEAT and Cascade-NEAT. These two algorithms show
promise in different scenarios, and a combination of the two could
result in a better overall algorithm.
In addition to the cascade architecture and basis functions,

there are other useful ideas from themachine learning community
that could be applied to neuroevolution. Chief among these
possibilities is the potential for an initial unsupervised training
period to initialize a large network, similar to the initial step
of training that happens in deep learning. Using unsupervised
learning to provide a good starting point for the search process
could have a dramatic effect on learning performance.
Finally, it would be useful to evaluate the lessons learned

here on other high-level reinforcement learning problems. One
potential candidate is a multi-agent vehicle control task, such
as that examined in Stanley, Kohl, Sherony, and Miikkulainen
(2005a). Previous work has shown that algorithms like NEAT are
effective at generating low-level control behaviors, like efficiently
steering a car through S-curves on a track. Successfully evolving
higher-level behavior to reason about opponents or race strategy
has proven difficult, but may be possible with algorithms like
Cascade-NEAT and RBF-NEAT.

7. Conclusion

Despite its success in the past, neuroevolution in general, and
NEAT in particular, has surprising difficulty solving certain types
of high-level decision-making problems. This paper presents the
hypothesis that this difficulty arises because these problems are
fractured: The correct action varies discontinuously as the agent
moves from state to state. A method for measuring fracture using
the concept of function variation is proposed, and several examples
of high-level reinforcement learning problems that possess such a
fractured quality are presented. While NEAT is shown to perform
rather poorly on these fractured problems, two modifications to
NEAT, called RBF-NEAT and Cascade-NEAT, improve performance
significantly by biasing or constraining the search for network
topologies towards local solutions. Thus, these methods lay the
groundwork for the next generation of neuroevolution algorithms
that can discover high-level strategic behavior.
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