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Abstract. In order to establish autonomous behavior for technical sys-
tems, the well known trade-off between reactive control and delibera-
tive planning has to be considered. Within this paper, we combine both
principles by proposing a two-level hierarchical reinforcement learning
scheme to enable the system to autonomously determine suitable solu-
tions to new tasks. The approach is based on a behavior representation
specified by hybrid automata, which combines continuous and discrete
behavior, to predict (anticipate) the outcome of a sequence of actions.
On the higher layer of the hierarchical scheme, the behavior is abstracted
in the form of finite state automata, on which value function iteration is
performed to obtain a goal leading sequence of subtasks. This sequence is
realized on the lower layer by applying policy gradient-based reinforce-
ment learning to the hybrid automaton model. The iteration between
both layers leads to a consistent and goal-attaining behavior, as shown
for a simple robot grasping task.

Keywords: Reinforcement learning, hierarchical model, hybrid automa-
ton, behavioral programming, artificial intelligence, planning.

1 Introduction

A characteristic property of intelligent autonomous systems is the capability to
determine goal-attaining behavior for tasks that are posed to the system for the
first time. A crucial point in determining such behavior is to anticipate what the
outcome of an own action is and how the environment reacts to the action, in
order to be able to select the best choice. Several approaches for anticipatory be-
havior of learning systems have been developed in recent years and are described,
e.g. in [5,6]. Reinforcement learning (RL) is one of the main approaches to estab-
lish anticipatory behavior [20,3]. RL uses an estimate of the outcome of future
actions and selects the actions for which a reward is maximized. The estimate of
the outcome is either based on the observation of past behavior (i.e. the system
runs iteratively through similar evolutions and assesses which actions lead to
an preferable outcome) or on model-based computation. The latter approach,
which is chosen in this paper, allows the system to evaluate the effects of a large
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variety of actions, even those which are potentially harmful for the system or its
environment (i.e the system should not encounter corresponding situations in
reality). Depending on the type of model used within RL and the period of time
over which future behavior is anticipated, one can distinguish between reactive
and deliberative planning. Reactive planning (often referred to as bottom-up
approach) considers the momentary situation and produces in response a single
action or a sequence of actions over a short period of future time. Often this
response is suitably determined based on a sophisticated model of the situation
or on a learned knowledge-base. Deliberative planning, in contrast, usually does
not only consider the momentary situation but, in addition, the future evolution
up to the point at which a task is accomplished – this means often that a (longer)
sequence of future actions has to be determined. The model must be appropriate
for anticipating the outcome of this sequence, i.e. the anticipation typically has
to cover a longer time horizon and, as an implication, the underlying model en-
codes behavior in a more abstract setting to enable real-time computation. For
planning of animals or humans, it is natural to combine both types of planning
and learning in a hierarchical setting, i.e. deliberative planning leads to a rough
plan for accomplishing a task, and this plan is further refined into concrete be-
havior using repetitively reaction to a changing environment along the envisaged
plan.

To employ this principle in technical systems, a number of approaches have
been proposed in the last decades, as e.g. multi-modal control, also referred to
as behavior-based robotics in [1]): a behavior based architectures consists of a
reactive controller and deliberative planner. The reactive controller is designed
as a basis behavior with direct access to sensor and actuator signals. The planner
acts on the behavior modules and is responsible for the interconnection of the
different behaviors, which may be executed in parallel. A crucial point within
these approach is the behavior coordination [16], such that emergent behaviors,
not designed by the programmer, may arise. In [12] the behavior-based approach
is used to speed up RL.

Other relevant published approaches combining learning with hierarchical
planning include the following: Parameterized nonlinear differential equations
are used in [19] to define motion primitives, which can be concatenated to build
complex behavior. Hierarchical reinforcement learning schemes, like MAXQ [7],
Options [17], and HAMS [15] use Semi-Markov processes to define subtasks –
this, however, in a rather rigid scheme since the exit states for the subtasks are
defined in advance. A hierarchical reinforcement learning approach on continu-
ous dynamics is described in [14], where a two-level hierarchy is introduced to
speed up learning. The higher level algorithm identifies subgoals in predefined
distances within the state space of the dynamic system, which are then used to
guide the system faster into the desired goal state.

The method presented in this paper is distinct from previously published ones
in the following respects: To represent behavior on two layers of a learning and
planning hierarchy, we use two types of formal dynamic models: On the lower
layer, behavior is formulated in terms of continuous dynamics (specified by ordi-
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nary differential equations) which changes discretely if certain logical conditions
become true or false. Hybrid automata, as introduced in [11], are suitable to
express such combined continuous-discrete behavior which is either controlled
by the discrete mode or in which controllers of the continuous dynamics imply
a certain sequence of discrete modes, see. e.g. [4,10,8,13]. For the example of a
robotic arm for transporting objects, the mode (or logical condition) may model
that different trajectories need to be realized depending on whether an object
is currently grasped or not. Starting from the hybrid automaton on the lower
layer, a more abstract representation of the behavior is derived for the higher
layer to allow deliberative planning. Finite state automata are chosen as the type
of the model, where the states represent different subgoals, and the transitions
encode the continuous evolution of the system in between two subgoals. The
rewards assigned to the transitions on the higher layer are calculated on-line on
the lower level. Based on the finite state automaton, value iteration [3] is used to
find the sequence of transitions with highest reward. This sequence is refined on
the lower layer by applying reinforcement learning to the continuous dynamics
of the hybrid automaton for each mode which corresponds to a transition of the
higher layer sequence. The result is a goal-attaining sequence of actions which
are obtained as a sequence of continuous control trajectories. Compared to the
approach proposed before by the authors in [18], we here combine reinforcement
learning on two layers, and the subgoals represented on the higher layer are cal-
culated on-line. Using this hierarchical scheme, two scale anticipatory behavior
is enforced in the sense that model-based anticipation of the reward of future
actions is the basis for a suitable (or even best) choice of actions.

The paper is organized as follows: Section 2 defines the hybrid automaton
and the problem of computing the respective action sequence for a given task.
The abstraction of the hybrid automaton to the subgoal representation by a
finite state automaton, is described in Sec. 3. The learning algorithms on the
two layers are introduced in Sec. 4. As the main result, the overall algorithm
for combining the two layers is specified in Sec. 5. An illustrating example is
introduced in Sec. 7, and Sec. 8 provides conclusions and an outlook on future
work.

2 Model and Problem Formulation

2.1 Lower Layer Model: Hybrid Automaton

Hybrid automata, as the type of the model chosen for the lower layer of the
learning hierarchy, enable the modeler to formulate distinct continuous behavior
for different modes of operation. In a first modeling step, the set of possible
modes is identified and a discrete state, referred to as location, is assigned to each
mode. Next the possible transitions between pairs of locations are identified and
are formally defined as the transition structure of the hybrid automaton. For
each location, a set of differential equations is identified to suitably describe the
change of the relevant continuous state variables over time. This change usually
depends on continuous input variables and is expressed by first order differential
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equations. Well-known principles of balancing energy, mass, or impulse lead for
many systems straightforwardly such rigorous dynamic models; the identification
based on measured is a possible alternative if the physical principles of the
system to be modeled are not well understood. Finally, the transitions are made
dependent on discrete inputs and on the continuous dynamics by specifying
conditions for the continuous state variables under which a transition is enabled.

Formally a hybrid automaton HA can be defined as a tuple

HA = (Z ,V ,X ,U , inv,Θ , g, r , f )

consisting of:

– Z = {z1, . . . , znz } as the finite set of discrete locations to represent the dis-
crete modes of operation;

– V = {v1, . . . , vnv } as the finite set of discrete inputs, triggering the transi-
tions by specifying the follow-up location1;

– the continuous state x defined on the continuous state space X ⊆ R
nx ;

– the continuous input u defined on the continuous input space U ⊆ R
nu ;

– inv : Z → 2X represents the assignment of invariants to locations; these
invariants, which are compact subsets of R

nx , represent the permitted values
of x as long as HA is in the respective location z ;

– the finite set of discrete transitions Θ ⊆ Z × Z ;
– a mapping g : Θ → 2X which assigns the so-called guard sets to the transi-

tions as the subset of continuous states g((zi, zj)) ⊆ X for which a transition
(zi, zj) ∈ Θ is enabled;

– the reset function r : Θ×X → X which is evaluated when a transition occurs
and which updates the continuous state upon execution of a transition;

– the continuous state dynamics f : Z × X × U → R
nx defining for every

location z the evolution of the continuous states over time by a set of ordinary
differential equations ẋ = f z (x ,u) := f (z ,x ,u).

For these syntactical elements, the evolution of the hybrid automaton can be
written formally as follows: Let the ordered set of event times T = {t0, t1, t2, . . .}
contain the initial time t0 and all points of time at which a discrete transition
is taken. Let z (t) denote the piecewise constant trajectory of the discrete loca-
tions with zk := z (t) for t ∈ ]tk , tk+1]. Likewise, v(t) is the piecewise constant
trajectory of discrete inputs, u(t) the continuous input trajectory, and x (t) the
continuous state trajectory. Define x k := x (tk ) and x+

k := x (t+
k ) with x (t+)

denoting the right hand limit of x at t .
An admissible hybrid state trajectory (z (t),x (t)) resulting from a given control

trajectory (u(t), v(t)) is then obtained as follows: After initialization to z0 =
z (t0) and x+

0 = x (t0), and assuming that no immediate transition occurs at t0,
the progress of HA between two event times tk and tk+1 is given by:

1 As transitions may occur non-deterministically when the guard sets overlap, the
discrete input selects the desired transition.
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– the continuous evolution x (t), t ∈]tk, tk+1] as existing unique solution of

ẋ (t) = f (zk ,x (t),u(t)),

x (tk ) = x+
k

with x (t) ∈ inv(zk ) ∀t ∈]tk , tk+1];
– followed by a transition (zk , zk+1) ∈ Θ which is subject to the guard set

according to x k+1 ∈ g((zk , zk+1)) and triggered by zk+1 = v(tk+1). The
updated continuous state is then obtained from:

x+
k+1 := r((zk , zk+1),x k+1) ∈ inv(zk+1).

Along a hybrid state trajectory (z (t),x (t)), the guard sets can be interpreted
as a sequence of subgoals into which the continuous trajectory is driven within
each location. When a guard set is reached, the system can change from one
location to another. The combination of the continuous dynamics within an
active location and the subgoal is understood as a subtask to be accomplished to
realize the hybrid state trajectory. A subtask is solved by determining the part
of the input trajectory (u(t), v(t)) which refers to the particular location.

2.2 Control Synthesis

A task to be solved can be defined such that a system has to be driven from a
current (or initial) state x k into a given future (or final) state x k+p (p events
later) – obviously, accomplishing the task means to solve a sequence of subtasks.
If solving the task is based on a behavior representation given by HA, a straight-
forward interpretation is that the model is used to anticipate the behavior of the
system under the effect of a chosen input trajectory. We formalize the evolution
from an initial state into a goal state by introducing the following sets:

– an initial hybrid state set (z0,X0) consisting of hybrid states build from one
initial location z0 ∈ Z and possible continuous initial states x 0 ∈ X0 and
X0 ⊂ inv(z0),

– a final hybrid state set (zF ,XF ) in which any element is composed of one
final discrete location zF ∈ Z and a possible continuous final state with
xF ∈ XF and XF ⊂ inv(zF ).

The control synthesis task is to find an input trajectory (u(t), v(t)) for HA
such that:

– an admissible trajectory (z (t),x (t)) results for any x 0 ∈ X0;
– the end state lies within the final set z (te) = zF and x (te) ∈ XF .

In general it is desired to find not only a feasible solution, but one which is op-
timal with respect to some performance criteria, e.g. the time to accomplish the
transfer from the initial state to the goal state. To circumvent the difficulty to solve
an optimal control problem for a hybrid automaton as the underlying dynamical
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system, local performance criteria are introduced for each location. The continu-
ous control u(t) is calculated to maximize the given local performance criteria.

An example is illustrated in Fig. 1: It consist of two locations {z1, z2} rep-
resenting two different continuous dynamics. The invariants for each location,
defining the state space of each continuous subsystem are illustrated by the
gray shaded regions. The two continuous dynamics {f 1, f 2}, defined on R

2, are
restricted to the subsets inv(z1) and inv(z2) respectively. A trajectory start-
ing within location z (t0) = z1 and x (0) ∈ X0, is depicted by the bold black
line. When the trajectory reaches the guard set g12, the discrete input is set to
z (t1) = v(t1) = z2. Thus, the discrete transition is taken and the reset function
r is evaluated for the state x (t1). The evolution of the trajectory starts again in
the co-domain of the reset function, governed then by the new dynamics f 2, and
progresses until the final set XF is reached. A corresponding technical example

inv(z1)

inv(z2)

x1

x2

X0

g12
XF

g21

r((z1, z2), x )

Fig. 1. An illustrating example of an hybrid automaton with two discrete locations z1
and z2

from the area of robotics is the transition from a locomotion task to a grasp-
ing task. The robot chassis dynamics is active while approaching the object to
grasp. When the object is within reach, the grasping dynamics of the robot arm
become active.

2.3 Higher Layer Model: Subgoal Automaton

Before introducing the algorithm for solving the control synthesis task, the sub-
goal automaton for modeling the system behavior in an abstract form on the
higher layer is introduced. As mentioned in Sec. 1, the reason for using a sec-
ond, less detailed behavior representation is that goal attainment by deliberative
planning usually requires to cover longer time horizons – searching for control
trajectories to solve the aforementioned control problem for HA and for long
time horizon often turns out to be too complicated to be accomplished in real
time. Thus, we here choose the approach to vertically decompose the problem
by temporarily searching for a solution to a task on a simplified behavior repre-
sentation. This model must still have enough structure to represent the behavior
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on a qualitative scale as well as a sufficiently small state space to allow finding
an action sequence quickly.

As mentioned above, the trajectory (z (t),x (t)) of a hybrid automaton con-
sists of the alternating sequence between the continuous evolution within one
location and the discrete transition to change locations, which represent partic-
ular modes of operation or capabilities of the technical system. In this regard,
the continuous evolution of the system can be considered as a subtask while the
subgoal, associated with the subtask, is given in terms of the guard set. The con-
tinuous evolution within one location of the HA is represented by a transition
of the subgoal automaton SGA, and a state of SGA corresponds to a guard set
of HA for representing a particular subgoal. For example, the hybrid trajectory
from the previously introduced example (see Fig. 1), is modeled by the sequence
(s0, s12, sF ). For each guard set as well as for the initial set and the final set,
a discrete state is introduced in SGA – the corresponding model is shown in
Fig. 2.

s21

s0

sFs12

a121

a012

a212 a1F

a20

Fig. 2. SGA model for the example in Fig. 1

Formally, the automaton is defined by:

SGA = (S ,A, h)

with:

– the finite set of discrete states S = {. . . , sij , . . .}∪{s0, sF} with one state sij
for each guard set gij defined for HA, complemented by the initial state s0
and the desired final state sF ;

– the set A = {. . . , ass′ , . . .} of actions ass′ which represent the hybrid evo-
lution of all trajectories originating from the guard set gs and leading to
gs′ ;

– the transition function is defined by h(s , ass′) = s ′ for a transition from
the state s to the state s ′ under effect of the action ass′ (introduced for
any possible transition of HA). Additionally, transitions for the initial state
s0 and the final state sF are defined, i.e. s0 is connected to all states s ∈ S
representing a guard set contained in the invariant gs ∈ inv(z0), and a similar
construction is used for the final state sF .
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2.4 Example

The modeling procedure is illustrated for a simple example consisting of a 1-
DOF robot arm which can move forward and backward. The task is to grab the
ball at position p0 and move it to p1.

p0 p1

ma

mb
x

Fig. 3. Robot arm with the aim to move the ball to position p1

The HA for the robot is modeled by two locations (z1, z2), where one repre-
sents free arm movement and one represents the movement of the arm with the
ball. The dynamics within the locations are given by

z1 : ẍ =
u

ma
, z2 : ẍ =

u
ma + mb

,

and the guard sets by:

g12 = {x | x = p0}, g21 = {x | x = p1}.

The grabbing/releasing of the ball is considered to be triggered by the discrete
input signal v ∈ {z1, z2}.

The states of the corresponding abstract model SGA are given by s0 (the
initial state as shown in Fig. 3), s12 (representation of the guard set g12), s21
(corresponding to the guard set g21), and sF : (the final state). A task for this
system would be to design a controller which drives the robot arm from x 0 to
p0, set v(t) = z2 such that the ball is grabbed and the transition is taken. Then,
the ball has to be moved to p1 and the discrete input is reset to v(t) = z1.

In general, the control synthesis task for the hybrid automaton is solved by: a)
determining an appropriate sequence of locations, b) identifying the appropri-
ate switching times/states for triggering the discrete transitions, and c) finding
the continuous control laws within each location for driving the system to the
identified states within the chosen guard sets.

3 Solution Algorithm

In the following, value iteration is used to find the sequence of locations on
the higher layer and reinforcement learning is used to calculate the continuous
control law on the lower layer. The reward signal on the higher layer, as the
underlying driving force of the value iteration algorithm, is first initialized to a
guess and then iteratively updated based on computation on the lower layer. The
reward signal on both layers is designed such that a positive reward is assigned
if a desired state is reached, and a negative reward if not.
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3.1 Value Iteration

Given the SGA model on the higher layer, value iteration is applied to find an
action sequence which leads the system from the initial state to the desired goal
state.

For a policy π : S → A, which provides for each state an appropriate action,
the accumulated reward from the initial state s0 to the goal state sN is given
by:

W π(s0) =
N−1∑

k=0

c(sk , h(sk , π(sk ))),

where (s0, s1, . . . , sN ) is the indexed state sequence of the resulting trajectory.
The calculation of the rewards css′ := c(s , s ′) associated with every action ass′

will be described in detail in Sec. 4. For realizing the goal oriented behavior, the
policy (a state to action mapping) is derived such that the reward-to-come is
maximized:

W (s0) = max
π

N−1∑

k=0

c(sk , h(sk , π(sk ))).

Applying the Bellman Principle, the maximal reward-to-come, referred to as the
value function, is formulated recursively

W (s) = max
a

{c(s , h(s , a)) + W (h(s , a))}, ∀s ∈ S . (1)

A greedy policy is directly derived by maximizing the one step reward plus the
expected/anticipated reward-to-come from the resulting state.

The subgoal automaton is a deterministic finite state automaton. Thus, value
iteration (see [3]) with a look-up table representation is a viable solution method
for the calculation of the value function.

After initialization of all values to zero, W0(s) = 0 for all s , the value function
is iteratively updated for all states by:

Wi(s) = max
a

{c(s , h(s , a)) + Wi−1(h(s , a)},

where i is the iteration index. Since no uncertainty of the outcome of actions
need to be considered, the incremental update rule (normally included in value
iteration schemes) is omitted. The pseudo code of the iterative procedure is listed
in Alg. 1. The state sequence from the initial state to the final state is obtained
by using the greedy policy.

3.2 Continuous Valued and Time Reinforcement Learning

In this section, the algorithm for the realization of the control commands on
the lower layer is introduced. The objective is to implement a solution which
is consistent to the sequence of discrete actions on the higher layer. The same
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Algorithm 1. Value iteration
INITIALIZATION: ∀s : W0(s) = 0, i = 0, δ = ∞
VALUE ITERATION:
while δ > Δ (a small threshold) do

for all s ∈ S do
Wi+1(s) := maxa∈A{c(s, h(s, a)) + Wi(h(s, a))}
δ = min(δ, |Wi+1(s) − Wi(s)|)
i := i + 1

end for
end while
STATE SEQUENCE:
return (s0, . . . , sn )

reward principle as on the higher layer is used. The algorithm for the implemen-
tation of a continuous time, continuous-valued version of reinforcement learning
was introduced in [9]. It is stated here in condensed form: Since each location is
considered separately, the system dynamics is specified by:

ẋ (t) = f (x (t),u(t)),

where the index for the location z is here omitted for simplicity of notation.
The reward signal is denoted by l(x (t),u(t)) and control inputs are calculated
to maximize the cumulative reward – this may model, e.g., the inverse time to
reach the next subgoal or the negative quadratic distance to the subgoal.

Similarly as previously introduced for SGA, the reward-to-come for a policy
u(t) = μ(x (t)) is given by:

V μ(x (t)) =
∫ tF

t

e−
s−t

τ l(x (s),u(s))ds ,

where tF is the time at which the trajectory x (t) reaches the guard set, or the
subgoal respectively. τ is the time constant for discounting future rewards. The
optimal value function maximizing the cumulative future reward is given as:

V ∗(x (t)) = max
u(s)

∫ tF

t

e−
s−t

τ l(x (s),u(s))ds ,

with u(s), s ∈ [t , tF ]. Applying the Bellman principle of optimality leads to a
discounted version of the Hamilton-Jacobi-Bellman equation (see [9] for details):

1
τ
V ∗(x (t)) = max

u
{l(x (t),u(t)) +

V ∗(x (t))
x

f (x (t),u(t))}, (2)

and the policy at a certain time is derived from the right-hand side to:

u = μ(x ) = argmax
u

{l(x ,u) +
V ∗(x )

x
f (x ,u)} (3)
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Since a continuous time, continuous-valued dynamical system is considered
(within one location), a look-up table representation of the value function is not
appropriate. Instead a function approximation architecture is used to represent
the value function:

V μ(x (t)) ≈ V (x (t),w).

Learning of the value function is performed in terms of updating the parameter
w of the function approximation. The self-consistency condition, which follows
from Eq. (2) to V̇ μ(x (t)) = 1

τ (V μ(x (t))−l(x (t), μ(x (t))), is used to evaluate the
current estimate V (x (t)) of the value function. The weights of the approximation
are adapted such that the error:

E (t) =
1
2
|V̇ (x (t)) − V (x (t)) + l(x (t), μ(t))|2 (4)

is minimized. As described in [9], a potential problem using V̇ to update the
weights is the symmetry in time. An approach to update the past estimates of
V (x (t)) without affecting the future estimates is to employ an Euler approxi-
mation V̇ (x (t)) = (V (x (t)) − V (x (t − Δt)))/Δt . The gradient of the squared
error (4) with respect to the parameter wi results then in:

∂E (t)
∂wi

= δ(t)
1

Δt

[(
1 − Δt

τ

)
∂V (x (t),w)

∂wi
− ∂V (x (t − Δt),w)

∂wi

]

with:

δ(t) =
1

Δt

[(
1 − Δt

τ

)
V (x (t)) − V (x (t − Δt))

]
+ l(x (t), μ(x )) (5)

as the temporal difference error. It coincides with the conventional TD error (see
[20]). A gradient descent algorithm to search for the wi , which minimizes the
error, uses the rule:

ẇi = −ηδ(t)
[(

1 − Δt
τ

)
∂V (x (t),w)

∂w i
− ∂V (x (t − Δt),w)

∂wi

]
(6)

with η as the learning rate. This update scheme corresponds to the residual-
gradient algorithm (see [2]).

The control law: The proposed procedure is an on-line learning approach,
thus the control law stated in Eq. (3) has to be solved in every simulation step.
Depending on the complexity of the reward l(x ,u) and the system dynamics
f (x ,u), the solution of this static optimization problem is in general difficult
to obtain. A possible approach is to establish an actor-critic architecture: the
feedback mapping μ : X → U is approximated by a function approximator and
is learned online. Under the assumptions that the reward function l is convex
in x and the dynamics is linear with respect to u , an analytic solution can be
derived by differentiating Eq. (3), leading to:

0 =
∂l(x ,u)

∂u
+

∂f (x ,u)T

∂u

∂V (x )T

∂x
. (7)



312 M. Rungger, H. Ding, and O. Stursberg

The solution with respect to u results in the control law. In [9], this is referred
to the value-gradient based policy.

The algorithm which realizes the described steps is specified below as(Alg. 2.
For each of a chosen number of N trials, the dynamics and parameter equation is
numerically simulated for the time interval [0P ], where P is an estimated upper
bound of time required to reach the corresponding subgoal.

The algorithm (Alg. 2) is embedded into the overall scheme according to Alg. 1
as the step to compute the rewards c, see the next section. A value function Vg

for each guard set g is determined when the corresponding continuous evolution
into g is requested as part of the action sequence computed on the higher layer.

Algorithm 2. Value-Gradient based value iteration within one location
PARAMETERS: N , P
INITIALIZATION: w(0) := 0
PROGRESS:
while j < N do

SET: x (0) := x0, t := 0
while t ≤ P do

Simulate x (t) and w(t) with
ẋ (t) = f (x (t),u(t))

ẇi(t) = −ηδ(t)
��

1 − Δt
τ

�
∂V (x(t),w)

∂wi
− ∂V (x(t−Δt),w)

∂wi

�

end while
j := j + 1

end while

4 The Hierarchical Learning Approach

Based on the algorithms 1 and 2, this section describes the overall procedure of
hierarchical learning. A crucial point of this procedure is the calculation of the
transition rewards for the algorithm 1. The rewards cijk represent the cumulative
reward obtained along the trajectory of the system within one location. Addi-
tionally, for each state s of the SGA, a goal state x s ∈ gs for the corresponding
subtask is assigned. It is used on the one hand to set the discrete control input
v when the continuous state trajectory enters a subgoal, and on the other hand
to guide the system within one location, i.e. to determine the low-level reward
signal l .

4.1 Subtask Reward Calculation

A transition ass′ of the subgoal automaton SGA represents the transfer of the
system from the entry into a location (e.g. by the preceding reset) into the next
guard set of the hybrid automaton HA. The transition can be interpreted as the
set of all possible trajectories connecting gs with gs′ , i.e. the rewards css′ in the
SGA represent the cumulative reward arising from such a transfer.
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For the calculation of the transition reward, the value function Vs′ of the
goal location is used in combination with the continuous goal state x s of the
preceding location:

css′ = Vs′(r s(x s)). (8)

As will be described below, the continuous subgoal state x s is calculated online
and may change over the iterations. In the case that the subtask cannot be
achieved, i.e. the subgoal state is not reachable, a low reward value is assigned
to the corresponding transition of SGA.

4.2 Subgoal State Calculation

Until now, the focus was on the calculation of the sequence of goal leading
locations and the corresponding continuous control trajectories u(t). To obtain
the control for setting the discrete input v , and thus to trigger a particular
transition, the subgoal state x s ∈ gs is examined further. The subgoal state of a
subtask is restricted to lie within the particular guard set gs which terminates
the subtask.

Starting the continuous evolution x (0) ∈ inv(zi) of the system within location
zi , the discrete input is set when the trajectory reaches the subgoal state

v = zj if x (t) = x sij ∈ gsij .

By determining the subgoal state within a guard set, the decision where and
when to switch is determined autonomously.

The subgoal plays a crucial role for the decision where to change location. The
subgoal state is the goal state for the current subtask. It is chosen to complete the
subtask (inside the guard set) and to give an initialization for the next subtask.
Thus, the subgoal state is calculated within the corresponding guard set and to
maximize the reward-to-come for the subsequent subtask s ′:

x s = argmax
x∈gs

Vs′(r s(x )). (9)

Thus, the choice of x s is based on an anticipation of the reward-to-come of the
next subtask. If the optimization result is not unique, the subgoal state is picked
randomly from the set of possible states.

4.3 Algorithm

The formulae Eq. (8) and Eq. (9) complete the set of components required to
formulate the overall learning algorithm. After the initialization of the value
function Vs for each state s of the SGA, the iteration is started. The first value
iteration results in a shortest path sequence from the initial state s0 to the final
state sF , since no value function on the lower layer is trained and no subgoal
x s is reached yet (equal rewards for all transitions). After the sequence of guard
sets (s0, . . . , sn) is determined by Alg. 1, the following is carried out for each
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transition ass′ referring to this sequence: first, the continuous subgoal state x ′
s

is calculated, and then Alg. 2 is executed to learn Vs′ . If the system trajec-
tory reaches the subgoal state x (t) = x s′ , the transition ass′ proposed by the
higher layer is realized and the learning of Vs continues for the next location.
If the subgoal state was found to be not reachable, the learning for the partic-
ular sequence (s0, . . . , sn) stops, the value function results in a low reward, and
thus the corresponding transition of the SGA is avoided subsequently. Then,
the value iteration on the higher layer resumes, this time with updated value
functions Vs to adapt the transition rewards. In this manner, the higher layer
value iteration is steered towards a state sequence for which the the guard sets
on the lower layer are reachable, and accordingly the control synthesis task in
Sec. 3.1 is solved. The algorithm, which is listed in Alg. 3, stops when the fi-
nal state is reached. Of course, the iteration may be repeated to enhance the
performance.

Algorithm 3. Algorithm for hierarchical reinforcement learning
INITIAL/FINAL STATE: x s0 := x0, x sF := xF

INITIALIZATION: render SGA, w s(0) := 0,
PROGRESS:
while ||x (t) − xF || < ε do

for all ass′ ∈ A do
css′ := Vs′(r s(x s))

end for
determine (s0, . . . , sn ) by Alg. 1
for i = 1 : n do

x si+1 := arg maxx∈g
si+1 Vsi+2(r(x ))

use Alg. 2 with x0 := x si , xG := x si+1

if x (t) �= x si+1 then
break and resume with outer while loop

end if
end for

end while

5 Simulation Results

In this section, the procedure is illustrated by means of a 2-DOF robot arm.
Similar to the previously introduced example, the task is specified as a trans-
portation problem, in which the robot arm has to move to position p0, grab the
ball, move it to position p1, and release it there (see Fig. 4). To illustrate the
proposed approach, the behavior of the robot arm is fixed to separated linear
and rotational motion. The resulting hybrid automaton consists of 4 locations,
representing linear motion without ball, linear motion with ball, rotational motion
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p0

p1

ϕ

l

Fig. 4. The robot arm aims to move the ball from position p0 to position p1 by using
its revolute and prismatic joints

without ball, and rotational motion with ball. The dynamics for the locations is
given as:

z1 : ẋ =

⎛

⎜⎜⎝

u1

0
0
0

⎞

⎟⎟⎠ z2 : ẋ =

⎛

⎜⎜⎝

u1

0
u1

0

⎞

⎟⎟⎠

z3 : ẋ =

⎛

⎜⎜⎝

0
u2

0
0

⎞

⎟⎟⎠ z4 : ẋ =

⎛

⎜⎜⎝

0
u2

0
u2

⎞

⎟⎟⎠

with x = (l , ϕ, lB , ϕB)T , denoting the translational positions (l , lB) and the
angles (ϕ, ϕB) of the robot’s end-effector, and the ball respectively (index B).
Neglecting the inertial forces, it is assumed that the translational control u1 and
the rotational control u2 are commanded directly. The invariants of all locations
are given by inv(z ) = [0.5, 1.2]× [−π, π] × [0.5, 1.2]× [−π, π].

Fig. 5(a) displays the hybrid automation with the four locations and the
corresponding guard sets and transitions. The transition from location z1 to
z2, i.e. from linear motion without ball to linear motion with ball is bound to
the guard set g12 = {x | |x1 − x3| < 0.01} indicating the state space, where
the end-effector approaches the ball (grabbing the ball is neglected). Since it is
everywhere allowed to release the ball, the guard set g21 for the reverse transition
coincides with the invariant of the location. The guard sets corresponding to the
transitions of the system from linear motion to rotational motion (z1 to z4 and
z2 to z3) also coincide with the invariant, and such that it is always possible
to take the transition. The reverse transition (from rotational to linear motion)
is restricted to the part of the state space in which the angular displacement is
zero: g32 = g41 = {x | x2 = 0}. The task initial state x 0 = (0.5 0 1.1 0)T ∈ inv(z1)
and final position xF = (0.8 0 0.8 π/3)T ∈ inv(z4) are marked in the figure.

The generated SGA is shown in Fig. 5(b). Its state set consists of one state
each for representing the guard sets sij , the initial state s0 and the final state sF .

According to the given task, the algorithm 3 is able to determine the following
solution, which intuitively is the correct one: The end-effector is first moved
from x0 ∈ inv(z1) to the ball position x1 = xB, thus entering the guard set
g12 and triggering the transition to z2. Then the ball is moved to x1 = 0.8 and
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x0 z1 z2

z3z4

g12

g21

g23

g32

g34

g43

g14

g41

gF

(a) The hybrid automation with its
guard sets for the considered robot arm.

s0

s12

s21

s23

s32

s34

s43

s14 s41

sF

(b) The generated transition automa-
ton.

Fig. 5. Dynamic models for the robot example

the transition to rotational motion occurs by which φ is changed to x2 = π/3.
The point (x s34 = (0.8 0 0.8 0)T) is determined iteratively by Eq. (9) within the
algorithm. The ball is then released and the robot arm moved to x2 = 0. The
corresponding state sequence for the SGA is (s0, s12, s23, s34, sF ).

To obtain this result, the continuous control on the lower layer is achieved by
formulating the reward for guiding the end-effector to the desired subgoals x s

within the different locations as:

r(x ,u) = −|x(t) − x s |2 −
∫ ui

0

ν tan
(

π

2
u

umax
i

)
du,

such that the control law using Eq. (7) results in:

μz (x ) =
2
π

umax arctan
(

1
ν

∂f z (x ,u)T

∂u

∂V (x ,w)T

∂x

)
.

The constant ν is chosen to 0.01, and the underlying approximating function
consists of linearly weighted Gaussian bell-shaped functions, also known as radial
basis functions (RBF).

For the iterative computation on the higher layer, the transition rewards for
SGA are initialized with −0.1, and the weights of the RBF-network are initialized
to 0. The first value iteration results in the shortest path sequence since all
transitions are initialized with the same reward, i.e. the sequence is:

(s0, s14, sF ).

As a result, the guard set g14 on the lower layer is the subgoal in the first step. Af-
ter the calculation of the particular state x s14 in g14 by evaluating argmaxx VsF ,
(see Eq. (9)) algorithm 2 is evoked with N = 10 trials for P = 10 sec. The tra-
jectory within the last trial reaches the guard set g14, thus the transition is
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taken and the algorithm continues within location z4. Alg. 2 is started again,
now with x sF = (0.8 0 0.8 π/3) targeting the final state. Since the last trajectory
within the iteration does not reach the final state (the ball is still at the initial
position), the iteration is interrupted, and the value iteration (Alg. 1) for SGA
is started again. This time, the rewards for the transition (s0, s14) and (s14, sF )
are updated by the values from Vg14 and VgF trained in the previous itera-
tion. While learning VgF , the goal is never reached, thus the reward diminished
to −0.30 (see Tab. 1). Thereafter, the value iteration results in the desired se-
quence (s0, s12, s23, s34, sF ), but it can not be realized on the lower level since the
corresponding value functions for the low level are not yet trained well enough.
Different sequences on the higher level are evaluated until again the desired se-
quence (s0, s12, s23, s34, sF ) is selected in the 5th iteration, which eventually can
be realized on the lower layer.

Table 1. Value function for SGA. Next to each value the index within the state
sequence computed for SGA is listed.

W 0 W 1 W 2 W 4 W 5

s0 -0.20 1 -0.40 1 -2.48 1 -2.50 1 -3.16 1
s12 -0.30 – -0.30 2 -0.50 2 -1.64 – -1.64 2
s23 -0.20 – -0.20 3 -0.20 – -0.20 – -0.20 3
s34 -0.10 – -0.10 4 -0.10 6 -0.10 4 -0.10 4
s41 -0.20 – -0.40 – -0.40 – -0.40 – -1.74 –
s14 -0.10 2 -0.30 – -0.30 4 -0.30 2 -1.84 –
s21 -0.20 – -0.40 – -0.40 3 -0.40 – -1.74 –
s32 -0.30 – -0.30 – -0.30 – -0.30 – -0.30 –
s43 -0.20 – -0.20 – -0.20 5 -0.20 3 -0.20 –
sF 0 3 0 5 0 7 0 5 0 5

The value functions Vg12 ,Vg23 ,Vg34 ,VgF used for the calculation of the con-
tinuous control law for the final sequence are plotted in Fig. 6(a-d). The black
solid lines show the trajectory of the end-effector within the last iteration. The
value functions have their maxima where the corresponding highest rewards are
observed. For example, Vs12 is the value function driving the system from the
linear motion without ball to linear motion with ball. The transition occurs when
the end effector reaches the ball position at x1 = 1.1. It can be seen that Vg12

has its maximum at this value, and thus the end effector is driven to the ball
position.

The subgoal state x s23 ∈ [0.5 1.2] × 0 × [0.5 1.2] × 0 triggering the transition
from linear motion to rotational motion with ball is determined by evaluating
argmaxx Vs34 . The guard set g34 represents the transition from the rotational
motion with ball to the rotational motion without ball. It is triggered at x s34 =
(0.8 π/3 0.8 π/3)T . The value function Vs34 is plotted over the guard set g23 in
Fig. 6(e). It can be observed that the maximum is at x1 = 0.8, hence x s23 =
(0.8 0 0.8 0)T . The trajectory of the end-effector for completing the task is plotted
over time in Fig. 6(f).
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(f) Goal leading trajectory of the end-
effector over time.

Fig. 6. Numerical results for the hierarchical reinforcement learning algorithm

6 Summary and Conclusion

A hierarchical algorithm is proposed by which a technical system can estab-
lish autonomous goal-attaining behavior for new tasks. To select between (se-
quences of) possible actions to accomplish the task, model-based anticipation of
the outcome of actions is used. The starting point, a hybrid automaton model,
represents the different capabilities of the system, but is often to complex for
finding control trajectories that solve the given task. Thus, the suggestion is
to generate the subgoal automaton (SGA), for which value iteration leads to a

0.5
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coarse and potentially goal-attaining sequence of subtasks. The rewards of the
transitions of SGA are updated iteratively from the lower level execution. The
vertical decomposition of the task solution together with the model-based an-
ticipation contribute to finding plans an control actions for rather complicated
task without the necessity of exploring the complete hybrid state space. On both
layers of the hierarchy an anticipated estimate of the future reward outcome of
possible action are computed – since the complete computation is model-based,
the system does not need to experiences behavior which is not successful (or
possibly harmful) in reality.

The introduced example demonstrates the viability of the proposed approach
for task solving, when different dynamics need to be activated in sequential man-
ner. The benefits of the approach is that the complicated tasks is split into a
(deliberative) planning of abstract action sequences on the higher layer and the
realization (reactive planning) on the low layer. Even if the solution is com-
pletely unclear to the system when the task is posed, the integrated solution
scheme achieves to find a feasible solution after a relatively low number of it-
erations without exploring large parts of the state search space of the original
problem (defined for HA). Thus, the hierarchical approach seems promising to
render reinforcement learning applicable to relative complex problems, by en-
forcing motion constraints and defining simple basic motion primitives, as in the
example where the robot arm is restricted to activate linear motion or rotational
motion sequentially. It is a matter of current work to investigate in detail what
complexity of tasks can be accounted for by the proposed approach.

Future work will focus on a formal convergence proof of the approach as well
as on a reduction of the number of hand tuned parameters, like the duration
and number of trials for the continuous time reinforcement learning.
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