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Abstract. DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine
whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array
devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether
cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues.

In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene
expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal
patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address
this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support
Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the
genes selected by our techniques yield better classification performance and are biologically relevant to cancer.

In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better
and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-
one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error).
In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only
86% accurate.

Keywords: diagnosis, diagnostic tests, drug discovery, RNA expression, genomics, gene selection, DNA micro-
array, proteomics, cancer classification, feature selection, support vector machines, recursive feature elimination

1. Introduction

The advent of DNA micro-array technology has brought to data analysts broad patterns
of gene expression simultaneously recorded in a single experiment (Fodor, 1997). In the
past few months, several data sets have become publicly available on the Internet. These
data sets present multiple challenges, including a large number of gene expression values
per experiment (several thousands to tens of thousands), and a relatively small number of
experiments (a few dozen).

The data can be analyzed from many different viewpoints. The literature already abounds
in studies of gene clusters discovered by unsupervised learning techniques (see e.g. Eisen,
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1998; Perou, 1999; Alon, 1999; Alizadeh, 2000). Clustering is often done along the other
dimension of the data. For example, each experiment may correspond to one patient carrying
or not carrying a specific disease (see e.g. Golub, 1999). In this case, clustering usually
groups patients with similar clinical records. Recently, supervised learning has also been
applied, to the classification of proteins (Brown, 2000) and to cancer classification (Golub,
1999).

This last paper on leukemia classification presents a feasibility study of diagnosis based
solely on gene expression monitoring. In the present paper, we go further in this direction
and demonstrate that, by applying state-of-the-art classification algorithms (Support Vector
Machines (Boser, 1992; Vapnik, 1998), a small subset of highly discriminant genes can
be extracted to build very reliable cancer classifiers. We make connections with related
approaches that were developed independently, which either combine (Furey, 2000; Pavlidis,
2000) or integrate (Mukherjee, 1999; Chapelle, 2000; Weston, 2000) feature selection with
SVMs.

The identification of discriminant genes is of fundamental and practical interest. Research
in Biology and Medicine may benefit from the examination of the top ranking genes to
confirm recent discoveries in cancer research or suggest new avenues to be explored. Medical
diagnostic tests that measure the abundance of a given protein in serum may be derived
from a small subset of discriminant genes.

This application also illustrates new aspects of the applicability of Support Vector Ma-
chines (SVMs) in knowledge discovery and data mining. SVMs were already known as
a tool that discovers informative patterns (Guyon, 1996). The present application demon-
strates that SVMs are also very effective for discovering informative features or attributes
(such as critically important genes). In a comparison with several other gene selection
methods on Colon cancer data (Alon, 1999) we demonstrate that SVMs have both quantita-
tive and qualitative advantages. Our techniques outperform other methods in classification
performance for small gene subsets while selecting genes that have plausible relevance to
cancer diagnosis.

After formally stating the problem and reviewing prior work (Section 2), we present in
Section 3 a new method of gene selection using SVMs. Before turning to the experimental
section (Section 5), we describe the data sets under study and provide the basis of our
experimental method (Section 4). Particular care is given to evaluate the statistical signifi-
cance of the results for small sample sizes. In the discussion section (Section 6), we review
computational complexity issues, contrast qualitatively our feature selection method with
others, and propose possible extensions of the algorithm.

2. Problem description and prior work

2.1. Classification problems

In this paper we address classification problems where the input is a vector that we call a
“pattern” of n components which we call “features”. We call F the n-dimensional feature
space. In the case of the problem at hand, the features are gene expression coefficients and
patterns correspond to patients. We limit ourselves to two-class classification problems. We
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identify the two classes with the symbols (+) and (−). A training set of a number of patterns
{x1, x2, . . . xk, . . . x�} with known class labels {y1, y2, . . . yk, . . . y�}, yk ∈ {−1, +1}, is
given. The training patterns are used to build a decision function (or discriminant function)
D(x), that is a scalar function of an input pattern x. New patterns are classified according
to the sign of the decision function:

D(x) > 0 ⇒ x ∈ class (+)

D(x) < 0 ⇒ x ∈ class (−)

D(x) = 0, decision boundary.

Decision functions that are simple weighted sums of the training patterns plus a bias are
called linear discriminant functions (see e.g. Duda, 1973). In our notations:

D(x) = w · x + b, (1)

where w is the weight vector and b is a bias value.
A data set is said to be “linearly separable” if a linear discriminant function can separate

it without error.

2.2. Space dimensionality reduction and feature selection

A known problem in classification specifically, and machine learning in general, is to
find ways to reduce the dimensionality n of the feature space F to overcome the risk of
“overfitting”. Data overfitting arises when the number n of features is large (in our case
thousands of genes) and the number � of training patterns is comparatively small (in our
case a few dozen patients). In such a situation, one can easily find a decision function that
separates the training data (even a linear decision function) but will perform poorly on test
data. Training techniques that use regularization (see e.g. Vapnik, 1998) avoid overfitting of
the data to some extent without requiring space dimensionality reduction. Such is the case,
for instance, of Support Vector Machines (SVMs) (Boser, 1992; Vapnik, 1998; Cristianini,
1999). Yet, as we shall see from experimental results (Section 5), even SVMs benefit from
space dimensionality reduction.

Projecting on the first few principal directions of the data is a method commonly used
to reduce feature space dimensionality (see, e.g. Duda, 73). With such a method, new
features are obtained that are linear combinations of the original features. One disadvantage
of projection methods is that none of the original input features can be discarded. In this
paper we investigate pruning techniques that eliminate some of the original input features
and retain a minimum subset of features that yield best classification performance. Pruning
techniques lend themselves to the applications that we are interested in. To build diagnostic
tests, it is of practical importance to be able to select a small subset of genes. The reasons
include cost effectiveness and ease of verification of the relevance of selected genes.

The problem of feature selection is well known in machine learning. For a review of
feature selection, see e.g. (Kohavi, 1997). Given a particular classification technique, it is
conceivable to select the best subset of features satisfying a given “model selection” criterion
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by exhaustive enumeration of all subsets of features. For a review of model selection, see
e.g. (Kearns, 1997). Exhaustive enumeration is impractical for large numbers of features
(in our case thousands of genes) because of the combinatorial explosion of the number of
subsets. In the discussion section (Section 6), we shall go back to this method that can
be used in combination with another method that first reduces the number of features to a
manageable size.

Performing feature selection in large dimensional input spaces therefore involves greedy
algorithms. Among various possible methods feature-ranking techniques are particularly
attractive. A fixed number of top ranked features may be selected for further analysis or
to design a classifier. Alternatively, a threshold can be set on the ranking criterion. Only
the features whose criterion exceeds the threshold are retained. In the spirit of Structural
Risk Minimization (see e.g. Vapnik, 1998; Guyon, 1992) it is possible to use the ranking
to define nested subsets of features F1 ⊂ F2 ⊂ · · · ⊂ F , and select an optimum subset
of features with a model selection criterion by varying a single parameter: the number of
features. In the following, we compare several feature-ranking algorithms.

2.3. Feature ranking with correlation coefficients

In the test problems under study, it is not possible to achieve an errorless separation with a
single gene. Better results are obtained when increasing the number of genes. Classical gene
selection methods select the genes that individually classify best the training data. These
methods include correlation methods and expression ratio methods. They eliminate genes
that are useless for discrimination (noise), but they do not yield compact gene sets because
genes are redundant. Moreover, complementary genes that individually do not separate well
the data are missed.

Evaluating how well an individual feature contributes to the separation (e.g. cancer vs.
normal) can produce a simple feature (gene) ranking. Various correlation coefficients are
used as ranking criteria. The coefficient used in Golub (1999) is defined as:

wi = (µi (+) − µi (−))/(σi (+) + σi (−)) (2)

where µi and σi are the mean and standard deviation of the gene expression values of
gene i for all the patients of class (+) or class (−), i = 1, . . . n. Large positive wi values
indicate strong correlation with class (+) whereas large negative wi values indicate strong
correlation with class (−). The original method of Golub (1999) is to select an equal number
of genes with positive and with negative correlation coefficient. Others (Furey, 2000) have
been using the absolute value of wi as ranking criterion. Recently, in Pavlidis (2000), the
authors have been using a related coefficient (µi (+) − µi (−))2/(σi (+)2 + µi (−)2), which
is similar to Fisher’s discriminant criterion (Duda, 1973).

What characterizes feature ranking with correlation methods is the implicit orthogonality
assumptions that are made. Each coefficient wi is computed with information about a single
feature (gene) and does not take into account mutual information between features. In the
next section, we explain in more details what such orthogonality assumptions mean.
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2.4. Ranking criterion and classification

One possible use of feature ranking is the design of a class predictor (or classifier) based on
a pre-selected subset of features. Each feature that is correlated (or anti-correlated) with the
separation of interest is by itself such a class predictor, albeit an imperfect one. This suggests
a simple method of classification based on weighted voting: the features vote proportionally
to their correlation coefficient. Such is the method being used in Golub (1999). The weighted
voting scheme yields a particular linear discriminant classifier:

D(x) = w · (x − µ) (3)

where w is defined in Eq. (2) and µ = (µ(+) + µ(−))/2.
It is interesting to relate this classifier to Fisher’s linear discriminant. Such a classifier is

also of the form of Eq. (3), with

w = S−1(µ(+) − µ(−)),

where S is the (n, n) within class scatter matrix defined as

S =
∑

x∈X (+)

(x − µ(+))(x − µ(+))T +
∑

x∈X (−)

(x − µ(−))(x − µ(−))T

And where µ is the mean vector over all training patterns. We denote by X (+) and X (−) the
training sets of class (+) and (−). This particular form of Fisher’s linear discriminant implies
that S is invertible. This is not the case if the number of features n is larger than the number of
examples � since then the rank of S is at most �. The classifier of Golub (1999) and Fisher’s
classifier are particularly similar in this formulation if the scatter matrix is approximated by
its diagonal elements. This approximation is exact when the vectors formed by the values
of one feature across all training patterns are orthogonal, after subtracting the class mean.
It retains some validity if the features are uncorrelated, that is if the expected value of the
product of two different feature is zero, after removing the class mean. Approximating S by
its diagonal elements is one way of regularizing it (making it invertible). But, in practice,
features are usually correlated and therefore the diagonal approximation is not valid.

We have just established that the feature ranking coefficients can be used as classifier
weights. Reciprocally, the weights multiplying the inputs of a given classifier can be used
as feature ranking coefficients. The inputs that are weighted by the largest value influence
most the classification decision. Therefore, if the classifier performs well, those inputs with
the largest weights correspond to the most informative features. This scheme generalizes
the previous one. In particular, there exist many algorithms to train linear discriminant
functions that may provide a better feature ranking than correlation coefficients. These
algorithms include Fisher’s linear discriminant, just mentioned, and SVMs that are the
subject of this paper. Both methods are known in statistics as “multivariate” classifiers, which
means that they are optimized during training to handle multiple variables (or features)
simultaneously. The method of Golub (1999), in contrast, is a combination of multiple
“univariate” classifiers.
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2.5. Feature ranking by sensitivity analysis

In this section, we show that ranking features with the magnitude of the weights of a linear
discriminant classifier is a principled method. Several authors have suggested to use the
change in objective function when one feature is removed as a ranking criterion (Kohavi,
1997). For classification problems, the ideal objective function is the expected value of the
error, that is the error rate computed on an infinite number of examples. For the purpose of
training, this ideal objective is replaced by a cost function J computed on training examples
only. Such a cost function is usually a bound or an approximation of the ideal objective,
chosen for convenience and efficiency reasons. Hence the idea to compute the change in
cost function D J (i) caused by removing a given feature or, equivalently, by bringing its
weight to zero. The OBD algorithm (LeCun, 1990) approximates D J (i) by expanding J
in Taylor series to second order. At the optimum of J , the first order term can be neglected,
yielding:

D J (i) = (1/2)
∂2 J

∂w2
i

(Dwi )
2 (4)

The change in weight Dwi = wi corresponds to removing feature i . The authors of the OBD
algorithm advocate using D J (i) instead of the magnitude of the weights as a weight pruning
criterion. For linear discriminant functions whose cost function J is a quadratic function of
wi these two criteria are equivalent. This is the case for example of the mean-squared-error
classifier (Duda, 1973) with cost function J = ∑

x∈X ‖w ·x− y‖2 and linear SVMs (Boser,
1992; Vapnik, 1998; Cristianini, 1999), which minimize J = (1/2)||w||2, under constrains.
This justifies the use of (wi )

2 as a feature ranking criterion.

2.6. Recursive Feature Elimination

A good feature ranking criterion is not necessarily a good feature subset ranking criterion.
The criteria D J (i) or (wi )

2 estimate the effect of removing one feature at a time on the
objective function. They become very sub-optimal when it comes to removing several
features at a time, which is necessary to obtain a small feature subset. This problem can
be overcome by using the following iterative procedure that we call Recursive Feature
Elimination:

1. Train the classifier (optimize the weights wi with respect to J ).
2. Compute the ranking criterion for all features (D J (i) or (wi )

2).
3. Remove the feature with smallest ranking criterion.

This iterative procedure is an instance of backward feature elimination (Kohavi, 2000 and
references therein). For computational reasons, it may be more efficient to remove several
features at a time, at the expense of possible classification performance degradation. In
such a case, the method produces a feature subset ranking, as opposed to a feature ranking.
Feature subsets are nested F1 ⊂ F2 ⊂ · · · ⊂ F .
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If features are removed one at a time, there is also a corresponding feature ranking.
However, the features that are top ranked (eliminated last) are not necessarily the ones that
are individually most relevant. Only taken together the features of a subset Fm are optimal
in some sense.

In should be noted that RFE has no effect on correlation methods since the ranking
criterion is computed with information about a single feature.

3. Feature ranking with Support Vector Machines

3.1. Support Vector Machines (SVM)

To test the idea of using the weights of a classifier to produce a feature ranking, we used
a state-of-the-art classification technique: Support Vector Machines (SVMs) (Boser, 1992;
Vapnik, 1998). SVMs have recently been intensively studied and benchmarked against
a variety of techniques (see for instance, Guyon, 1999). They are presently one of the
best-known classification techniques with computational advantages over their contenders
(Cristianini, 1999).

Although SVMs handle non-linear decision boundaries of arbitrary complexity, we limit
ourselves, in this paper, to linear SVMs because of the nature of the data sets under investi-
gation. Linear SVMs are particular linear discriminant classifiers (see Eq. (1)). An extension
of the algorithm to the non-linear case can be found in the discussion section (Section 6).
If the training data set is linearly separable, a linear SVM is a maximum margin classi-
fier. The decision boundary (a straight line in the case of a two-dimensional separation)
is positioned to leave the largest possible margin on either side. A particularity of SVMs
is that the weights wi of the decision function D(x) are a function only of a small subset
of the training examples, called “support vectors”. Those are the examples that are closest
to the decision boundary and lie on the margin. The existence of such support vectors is
at the origin of the computational properties of SVM and their competitive classification
performance. While SVMs base their decision function on the support vectors that are the
borderline cases, other methods such as the method used by Golub et al. (1999) base their
decision function on the average case. As we shall see in the discussion section (Section 6),
this has also consequences on the feature selection process.

In this paper, we use one of the variants of the soft-margin algorithm described in Cortes
(1995). Training consists in executing the following quadratic program:

Algorithm SVM-train:

Inputs: Training examples {x1, x2, . . . xk, . . . x�} and class labels {y1, y2, . . . yk, . . . y�}.



Minimize over αk:

J = (1/2)
∑
hk

yh yk αh αk (xh · xk + λδhk) −
∑

k

αk

subject to:

0 ≤ αk ≤ C and
∑

k

αk yk = 0

(5)

Outputs: Parameters αk .
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The summations run over all training patterns xk that are n dimensional feature vectors,
xh · xk denotes the scalar product, yk encodes the class label as a binary value +1 or −1,
δhk is the Kronecker symbol (δhk = 1 if h = k and 0 otherwise), and λ and C are positive
constants (soft margin parameters). The soft margin parameters ensure convergence even
when the problem is non-linearly separable or poorly conditioned. In such cases, some of
the support vectors may not lie on the margin. Most authors use either λ or C . We use a
small value of λ (of the order of 10−14) to ensure numerical stability. For the problems under
study, the solution is rather insensitive to the value of C because the training data sets are
linearly separable down to just a few features. A value of C = 100 is adequate.

The resulting decision function of an input vector x is:

D(x) = w · x + b

with

w =
∑

k

αk yk xk and b = 〈yk − w · xk〉

The weight vector w is a linear combination of training patterns. Most weights αk are
zero. The training patterns with non-zero weights are support vectors. Those with weight
satisfying the strict inequality 0 < αk < C are marginal support vectors. The bias value b is
an average over marginal support vectors.

Many resources on support vector machines, including computer implementations can
be found at: http://www.kernel-machines.org.

3.2. SVM Recursive Feature Elimination (SVM RFE)

SVM RFE is an application of RFE using the weight magnitude as ranking criterion.
We present below an outline of the algorithm in the linear case, using SVM-train in Eq. (5).

An extension to the non-linear case is proposed in the discussion section (Section 6).

Algorithm SVM-RFE:
Inputs:
Training examples

X0 = [x1, x2, . . . xk, . . . x�]T

Class labels

y = [y1, y2, . . . yk, . . . y�]T

Initialize:
Subset of surviving features

s = [1, 2, . . . n]

Feature ranked list

r = [ ]

Repeat until s = [ ]
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Restrict training examples to good feature indices

X = X0(:, s)
Train the classifier

α = SVM-train(X, y)

Compute the weight vector of dimension length(s)

w =
∑

k

αk yk xk

Compute the ranking criteria

ci = (wi)
2, for all i

Find the feature with smallest ranking criterion

f = argmin(c)
Update feature ranked list

r = [s(f), r]

Eliminate the feature with smallest ranking criterion

s = s(1: f − 1, f + 1: length(s))
Output:
Feature ranked list r.

As mentioned before the algorithm can be generalized to remove more than one feature
per step for speed reasons.

4. Material and experimental method

4.1. Description of the data sets

We present results on two data sets both of which consist of a matrix of gene expression
vectors obtained from DNA micro-arrays (Fodor, 1997) for a number of patients. The first
set was obtained from cancer patients with two different types of leukemia. The second set
was obtained from cancerous or normal colon tissues. Both data sets proved to be relatively
easy to separate. After preprocessing, it is possible to find a weighted sum of a set of only a
few genes that separates without error the entire data set (the data set is linearly separable).
Although the separation of the data is easy, the problems present several features of difficulty,
including small sample sizes and data differently distributed between training and test set
(in the case of leukemia).

One particularly challenging problem in the case of the colon cancer data is that “tumor”
samples and “normal” samples differ in cell composition. Tumors are generally rich in
epithelial (skin) cells whereas normal tissues contain a variety of cells, including a large
fraction of smooth muscle cells. Therefore, the samples can easily be split on the basis of
cell composition, which is not informative for tracking cancer-related genes.

4.1.1. Differentiation of two types of Leukemia. In Golub (1999), the authors present
methods for analyzing gene expression data obtained from DNA micro-arrays in order
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to classify types of cancer. Their method is illustrated on leukemia data that is available
on-line.

The problem is to distinguish between two variants of leukemia (ALL and AML). The
data is split into two subsets: A training set, used to select genes and adjust the weights of
the classifiers, and an independent test set used to estimate the performance of the system
obtained. Their training set consists of 38 samples (27 ALL and 11 AML) from bone marrow
specimens. Their test set has 34 samples (20 ALL and 14 AML), prepared under different
experimental conditions and including 24 bone marrow and 10 blood sample specimens.
All samples have 7129 features, corresponding to some normalized gene expression value
extracted from the micro-array image. We retained the exact same experimental conditions
for ease of comparison with their method.

In our preliminary experiments, some of the large deviations between leave-one-out
error and test error could not be explained by the small sample size alone. Our data analysis
revealed that there are significant differences between the distribution of the training set
and the test set. We tested various hypotheses and found that the differences can be traced
to differences in the data sources. In all our experiments, we followed separately the per-
formance on test data from the various sources. However, since it ultimately did not affect
our conclusions, we do not report these details here for simplicity.

4.1.2. Colon cancer diagnosis. In Alon (1999), the authors describe and study a data set
that is available on-line. Gene expression information was extracted from DNA micro-array
data resulting, after pre-processing, in a table of 62 tissues × 2000 gene expression values.
The 62 tissues include 22 normal and 40 colon cancer tissues. The matrix contains the
expression of the 2000 genes with highest minimal intensity across the 62 tissues. Some
genes are non-human genes.

The paper of Alon et al. provides an analysis of the data based on top down hierarchical
clustering, a method of unsupervised learning. They show that most normal samples cluster
together and most cancer samples cluster together. They explain that “outlier” samples that
are classified in the wrong cluster differ in cell composition from typical samples. They
compute a so-called “muscle index” that measures the average gene expression of a number
of smooth muscle genes. Most normal samples have high muscle index and cancer samples
low muscle index. The opposite is true for most outliers.

Alon et al. also cluster genes. They show that some genes are correlated with the cancer
vs. normal separation but do not suggest a specific method of gene selection. Our reference
gene selection method will be that of Golub et al. that was demonstrated on leukemia data
(Golub, 1999). Since there was no defined training and test set, we split randomly the data
into 31 samples for training and 31 samples for testing.

4.2. Assessment of classifier quality

In Golub (1999), the authors use several metrics of classifier quality, including error rate,
rejection rate at fixed threshold, and classification confidence. Each value is computed both
on the independent test set and using the leave-one-out method on the training set. The leave-
one-out procedure consists of removing one example from the training set, constructing the
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decision function on the basis only of the remaining training data and then testing on the
removed example. In this fashion one tests all examples of the training data and measures
the fraction of errors over the total number of training examples.

In this paper, in order to compare methods, we use a slightly modified version of these
metrics. The classification methods we compare use various decision functions D(x) whose
inputs are gene expression coefficients and whose outputs are a signed number. The clas-
sification decision is carried out according to the sign of D(x). The magnitude of D(x) is
indicative of classification confidence.

We use four metrics of classifier quality (see figure 1):

– Error (B1 + B2) = number of errors (“bad”) at zero rejection.
– Reject (R1 + R2) = minimum number of rejected samples to obtain zero error.
– Extremal margin (E/D) = difference between the smallest output of the positive class

samples and the largest output of the negative class samples (rescaled by the largest
difference between outputs).

Figure 1. Metrics of classifier quality. The gray and black curves represent example distributions of two classes:
class (−) and class (+). Gray: Number of examples of class (−) whose decision function value is larger than or
equal to θ . Black: Number of examples of class (+) whose decision function value is smaller than or equal to θ .
The number of errors B1 and B2 are the ordinates of θ = 0. The number of rejected examples R1 and R2 are the
ordinates of −θR and θR in the gray and black curves respectively. The decision function value of the rejected
examples is smaller than θR in absolute value, which corresponds to examples of low classification confidence.
The threshold θR is set such that all the remaining “accepted” examples are well classified. The extremal margin
E is the difference between the smallest decision function value of class (+) examples and the largest decision
function value of class (−) examples. On the example of the figure, E is negative. If the number of classification
error is zero, E is positive. The median margin M is the difference in median decision function value of the class
(+) density and the class (−) density.
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– Median margin (M/D) = difference between the median output of the positive class
samples and the median output of the negative class samples (re-scaled by the largest
difference between outputs).

Each value is computed both on the training set with the leave-one-out method and on the
test set.

The error rate is the fraction of examples that are misclassified (corresponding to a
diagnostic error). It is complemented by the success rate. The rejection rate is the fraction
of examples that are rejected (on which no decision is made because of low confidence). It
is complemented by the acceptance rate. Extremal and median margins are measurements
of classification confidence.

Notice that this notion of margin computed with the leave-one-out method or on the
test set differs from the margin computed on training examples sometimes used in model
selection criteria (Vapnik, 1998).

4.3. Accuracy of performance measurements with small sample sizes

Because of the very small sample sizes, we took special care in evaluating the statistical
significance of the results. In particular, we address:

1. How accurately the test performance predicts the true classifier performance (measured
on an infinitely large test set).

2. With what confidence we can assert that one classifier is better than another when its
test performance is better than the other is.

Classical statistics provide us with error bars that answer these questions (for a review, see
e.g. Guyon, 1998). Under the conditions of our experiments, we often get 1 or 0 error on
the test set. We used a z-test with a standard definition of “statistical significance” (95%
confidence). For a test sample of size t = 30 and a true error rate p = 1/30, the difference
between the observed error rate and the true error rate can be as large as 5%. We use the
formula ε = zη sqrt(p(1 − p)/t), where zη = sqrt(2) erfinv(−2(η − 0.5)), and erfinv is the
inverse error function, which is tabulated. This assumes i.i.d. errors, one-sided risk and
the approximation of the Binomial law by the Normal law. This is to say that the absolute
performance results (question 1) should be considered with extreme care because of the
large error bars.

In contrast, it is possible to compare the performance of two classification systems (rel-
ative performance, question 2) and, in some cases, assert with confidence that one is better
than the other is. For that purpose, we shall use the following statistical test (Guyon, 1998).

With confidence (1 − η) we can accept that one classifier is better than the other, using
the formula:

(1 − η) = 0.5 + 0.5 erf( zη/sqrt(2))

zη = ε t/sqrt(ν)
(6)
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where t is the number of test examples, ν is the total number of errors (or rejections) that
only one of the two classifiers makes, ε is the difference in error rate (or in rejection rate),
and erf is the error function erf(x) = ∫ x

0 exp(−t2) dt .
This assumes i.i.d. errors, one-sided risk and the approximation of the Binomial law by

the Normal law.

5. Experimental results

5.1. The features selected matter more than the classifier used

In a first set of experiments, we carried out a comparison between the method of Golub et
al. and SVMs on the leukemia data. We de-coupled two aspects of the problem: selecting
a good subset of genes and finding a good decision function. We demonstrated that the
performance improvements obtained with SVMs could be traced to the SVM feature (gene)
selection method. The particular decision function that is trained with these features matters
less.

As suggested in Golub (1999) we performed a simple preprocessing step. From each gene
expression value, we subtracted its mean and divided the result by its standard deviation.
We used the Recursive Feature Elimination (RFE) method, as explained in Section 3. We
eliminated chunks of genes at a time. At the first iteration, we reached the number of genes,
which is the closest power of 2. At subsequent iterations, we eliminated half of the remaining
genes. We thus obtained nested subsets of genes of increasing informative density. The
quality of these subsets of genes was then assessed by training various classifiers, including
a linear SVM, the Golub et al. classifier, and Fisher’s linear discriminant (see e.g. Duda,
1973).

The various classifiers that we tried did not yield significantly different performance.
We report the results of the classifier of Golub (1999) and a linear SVM. We performed
several cross tests with the baseline method to compare gene sets and classifiers (figure 2
and Tables 1–4): SVMs trained on SVM selected genes or on baseline genes and baseline
classifier trained on SVM selected genes or on baseline genes. Baseline classifier refers to
the classifier of Eq. (3) described in Golub (1999). Baseline genes refer to genes selected
according to the ranking criterion of Eq. (2) described in Golub (1999). In figure 2, the larger
the colored area, the better the classifier. It is easy to see that a change in classification method
does not affect the result significantly whereas a change in gene selection method does.

Table 5 summarizes the best results obtained on the test set for each combination of
gene selection and classification method. The classifiers give identical results, given a gene
selection method. This result is consistent with Furey (2000) who observed on the same data
no statistically significant difference in classification performance for various classifiers all
trained with genes selected by the method of Golub (1999). In contrast, the SVM selected
genes yield consistently better performance than the baseline genes for both classifiers. This
is a new result compared to Furey (2000) since the authors did not attempt to use SVMs
for gene selection. Other authors also report performance improvements for SVM selected
genes using other algorithms (Mukherjee, 1999; Chapelle, 2000; Weston, 2000). The details
are reported in the discussion section (Section 6).
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Figure 2. Performance comparison between SVMs and the baseline method (Leukemia data). Classifiers have
been trained with subsets of genes selected with SVMs and with the baseline method (Golub, 1999) on the training
set of the Leukemia data. The number of genes is color coded and indicated in the legend. The quality indicators
are plotted radially: channel 1–4 = cross-validation results with the leave-one-out method; channels 5–8 = test set
results; suc = success rate; acc = acceptance rate; ext = extremal margin; med = median margin. The coefficients
have been rescaled such that each indicator has zero mean and variance 1 across all four plots. For each classifier,
the larger the colored area, the better the classifier. The figure shows that there is no significant difference between
classifier performance on this data set, but there is a significant difference between the gene selections.

We tested the significance of the difference in performance with Eq. (6). Whether SVM
or baseline classifier, SVM genes are better with 84.1% confidence based on test error rate
and 99.2% based on the test rejection rate.

To compare the top ranked genes, we computed the fraction of common genes in the
SVM selected subsets and the baseline subsets. For 16 genes or less, at most 25% of the
genes are common.

We show in figure 3(a) and (c) the expression values of the 16-gene subsets for the training
set patients. At first sight, the genes selected by the baseline method look a lot more orderly.
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Table 1. SVM classifier trained on SVM genes obtained with the RFE method (Leukemia data).

Training set (38 samples) Test set (34 samples)

Number of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed

All (7129) 0.95 0.87 0.01 0.42 0.85 0.68 −0.05 0.42

4096 0.82 0.05 −0.67 0.30 0.71 0.09 −0.77 0.34

2048 0.97 0.97 0.00 0.51 0.85 0.53 −0.21 0.41

1024 1.00 1.00 0.41 0.66 0.94 0.94 −0.02 0.47

512 0.97 0.97 0.20 0.79 0.88 0.79 0.01 0.51

256 1.00 1.00 0.59 0.79 0.94 0.91 0.07 0.62

128 1.00 1.00 0.56 0.80 0.97 0.88 −0.03 0.46

64 1.00 1.00 0.45 0.76 0.94 0.94 0.11 0.51

32 1.00 1.00 0.45 0.65 0.97 0.94 0.00 0.39

16 1.00 1.00 0.25 0.66 1.00 1.00 0.03 0.38

8 1.00 1.00 0.21 0.66 1.00 1.00 0.05 0.49

4 0.97 0.97 0.01 0.49 0.91 0.82 −0.08 0.45

2 0.97 0.95 −0.02 0.42 0.88 0.47 −0.23 0.44

1 0.92 0.84 −0.19 0.45 0.79 0.18 −0.27 0.23

The success rate (at zero rejection), the acceptance rate (at zero error), the external margin and the median
margin are reported for the leave-one-out method on the 38 sample training set (V results) and the 34 sample
test set (T results). We outline in boldface the classifiers performing best on test data reported in Table 5.
For comparison, we also show the results on all genes (no selection).

This is because they are strongly correlated with either AML or ALL. There is therefore
a lot of redundancy in this gene set. In essence, all the genes carry the same information.
Conversely, the SVM selected genes carry complementary information. This is reflected in
the output of the decision function (figure 3(b) and (d)), which is a weighted sum of the 16
gene expression values. The SVM output separates AML patients from ALL patients more
clearly.

5.2. SVMs select relevant genes

In another set of experiments, we compared the effectiveness of various feature selection
techniques. Having established in Section 5.1 that the features selected matter more than
the classifier, we compared various feature selection techniques with the same classifier (a
linear SVM). The comparison is made on Colon cancer data because it is a more difficult
data set and therefore allows us to better differentiate methods.

In this section, unless otherwise stated, we use Recursive Feature Elimination (RFE) by
eliminating one gene at a time. We use a number of preprocessing steps that include: taking
the logarithm of all values, normalizing sample vectors, normalizing feature vectors, and
passing the result through a squashing function of the type f (x) = c antan(x/c) to diminish
the importance of outliers. Normalization consists in subtracting the mean over all training
values and dividing by the corresponding standard deviation.
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Table 2. SVM classifier trained on baseline genes (Leukemia data).

Training set (38 samples) Test set (34 samples)

Number of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed

All (7129) 0.95 0.87 0.01 0.42 0.85 0.68 −0.05 0.42

4096 0.92 0.18 −0.43 0.29 0.74 0.18 −0.68 0.36

2048 0.95 0.95 −0.09 0.32 0.85 0.38 −0.25 0.33

1024 1.00 1.00 0.09 0.34 0.94 0.62 −0.13 0.34

512 1.00 1.00 0.08 0.39 0.94 0.76 −0.06 0.37

256 1.00 1.00 0.08 0.40 0.91 0.79 −0.04 0.42

128 1.00 1.00 0.09 0.39 0.94 0.82 −0.04 0.49

64 0.97 0.97 0.01 0.44 0.97 0.82 −0.09 0.44

32 1.00 1.00 0.07 0.46 0.91 0.88 −0.07 0.42

16 1.00 1.00 0.16 0.52 0.94 0.91 −0.07 0.39

8 1.00 1.00 0.17 0.52 0.91 0.85 −0.10 0.51

4 1.00 1.00 0.21 0.48 0.88 0.68 −0.03 0.28

2 0.97 0.97 0.00 0.36 0.79 0.47 −0.22 0.27

1 0.92 0.84 −0.19 0.45 0.79 0.18 −0.27 0.23

The success rate (at zero rejection, the acceptance rate (at zero error), the extremal margin and the median
margin are reported for the leave-one-out method on the 38 sample training set (V results) and the 34 sample
test set (T results). We outline in boldface the classifiers performing best on test data reported in Table 5.
For comparison, we also show the results on all genes (no selection).

We first conducted a preliminary set of experiments using the data split of 31 training
samples and 31 test samples. We summarize the results of the comparison between the
SVM method and the baseline method (Golub, 1999) in Table 6. According to the statistical
test of Eq. (6) computed on the error rate, the SVM method (SVM classifier trained on
SVM genes) is significantly better than the baseline method (baseline classifier trained on
baseline genes).

On the basis of this test, we can accept that the SVM is better than the baseline method
with 95.8% confidence. In addition, the SVM achieves better performance with fewer
genes.

Yet, the rejection rate reveals that some of the misclassified examples are very far from
the decision boundary: most of the examples must be rejected to yield zero error. We ex-
amined the misclassified examples. As mentioned previously, the tissue composition of
the samples is not uniform. Most tumor tissues are rich in epithelial (skin) cells and most
normal samples are rich in muscle cells. The muscle index is a quantity computed by Alon
et al. (1999) that reflects the muscle cell contents of a given sample. Most misclassified
examples have an inverted muscle index (high for tumor tissues and low for normal tis-
sues). An analysis of the genes discovered reveals that on such a small training data set
both methods rank first a smooth muscle gene (gene J02854). Therefore, the separation
is made on the basis of tissue composition rather than the distinction cancer vs. normal.
We conjectured that the size of the training set was insufficient for the SVM to eliminate
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Table 3. Baseline classifier trained on SVM genes obtained with the RFE method (Leukemia data).

Training set (38 samples) Test set (34 samples)

Number of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed

All (7129) 0.89 0.47 −0.25 0.28 0.85 0.35 −0.24 0.34

4096 0.97 0.97 0.01 0.41 0.88 0.59 −0.12 0.40

2048 1.00 1.00 0.29 0.56 0.88 0.76 −0.07 0.45

1024 1.00 1.00 0.44 0.67 0.94 0.82 0.01 0.47

512 1.00 1 00 0.39 0.81 0.91 0.88 0.07 0.55

256 1.00 1.00 0.55 0.76 0.94 0.94 0.09 0.62

128 1.00 1.00 0.56 0.81 0.94 0.82 0.02 0.45

64 1.00 1.00 0.47 0.74 1.00 1.00 0.14 0.49

32 1.00 1.00 0.44 0.66 0.94 0.79 0.01 0.40

16 1.00 1.00 0.27 0.63 0.94 0.91 0.03 0.39

8 1.00 1.00 0.25 0.62 0.97 0.94 0.05 0.50

4 0.95 0.89 0.04 0.45 0.88 0.76 −0.09 0.45

2 0.97 0.95 0.03 0.39 0.88 0.44 −0.23 0.44

1 0.92 0.76 −0.17 0.43 0.79 0.18 −0.27 0.23

The success rate (at zero rejection), the acceptance rate (at zero error), the extremal margin and the median
margin are reported for the leave-one-out method on the 38 sample training set (V results) and the 34 sample
test set (T results). We outline in boldface the classifiers performing best on test data reported in Table 5.
For comparison, we also show the results on all genes (no selection).

tissue composition related genes that are presumably irrelevant to the cancer vs. normal
separation.

In a second set of experiments, to increase the training set size, we placed all the Colon
cancer data into one training set of 62 samples. We used the leave-one-out method to assess
performance.

The best leave-one-out performance is 100% accuracy for the SVMs (SVM classifier
trained on SVM genes) and only 90% for the baseline method (baseline classifier trained on
baseline genes). Using the statistical test of Eq. (6), we can assert with 99.3% confidence that
SVMs are better than the baseline method. An analysis of the genes discovered reveals that
the first smooth muscle gene ranks 5 for the baseline method and only 41 for SVMs. SVMs
seem to be able to avoid relying on tissue composition related genes to do the separation.
As confirmed by biological data presented in Section 5.3, the top ranking genes discovered
by SVMs are all plausibly related to the cancer vs. normal separation. In contrast, the
baseline method selects genes that are plausibly related to tissue composition and not to the
distinction cancer vs. normal in its top ranking genes.

It is instructive to examine the support vectors to understand the mechanism of gene
selection used by SVM RFE. The α’s do not vary a lot until the last few iterations. The
number of support vectors goes through a minimum at 7 genes for 7 support vectors (it is
coincidental that the two numbers are 7). At this point, the leave-one-out error is zero. In
Table 7, we show the “muscle index” values of these 7 support vectors. We remind that
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Table 4. Baseline classifier trained on baseline genes (Leukemia data).

Training set (38 samples) Test set (34 samples)

Number of genes Vsuc Vacc Vext Vmed Tsuc Tacc Text Tmed

All (7129) 0.89 0.47 −0.25 0.28 0.85 0.35 −0.24 0.34

4096 0.95 0.76 −0.12 0.33 0.85 0.44 −0.20 0.37

2048 0.97 0.97 0.02 0.36 0.85 0.53 −0.13 0.37

1024 1.00 1.00 0.11 0.36 0.94 0.65 −0.11 0.37

512 1.00 1 00 0.11 0.39 0.94 0.79 −0.05 0.40

256 1.00 1.00 0.11 0.40 0.91 0.76 −0.02 0.43

128 1.00 1.00 0.12 0.39 0.94 0.82 −0.02 0.50

64 1.00 1.00 0.07 0.43 0.97 0.82 −0.08 0.45

32 1.00 1.00 0.11 0.44 0.94 0.85 −0.07 0.42

16 1.00 1.00 0.18 0.50 0.94 0.85 −0.07 0.40

8 1.00 1.00 0.15 0.50 0.91 0.82 −0.10 0.51

4 1.00 1.00 0.18 0.45 0.88 0.62 −0.03 0.28

2 0.95 0.92 0.02 0.33 0.82 0.59 −0.22 0.27

1 0.92 0.76 −0.17 0.43 0.79 0.18 −0.27 0.23

The success rate (at zero rejection), the acceptance rate (at zero error), the extremal margin and the median margin
are reported for the leave-one-out method on the 38 sample training set (V results) and the 34 sample test set (T
results). We outline in boldface the classifiers performing best on test data reported in Table 5. For comparison,
we also show the results on all genes (no selection).

Table 5. Best classifiers on test data (Leukemia data).

SVM RFE Baseline feature selection No feature selection

Error # Reject # Error # Reject # Error # Reject #
Selection
method

classifier #genes (0 rej.) (0 error) #genes (0 rej.) (0 error) #genes (0 rej.) (0 error)

SVM 8, 16 0 {} 0 {} 64 1 {28} 6 {4, 16, 22, 7129 5 {16, 19, 22, 11 {2, 4, 14, 16,
classifier 23, 28, 29} 23, 28} 19, 20, 22, 23,

24, 27,28}
Baseline 64 0 {} 0 {} 64 1 {28} 6 {4, 16, 22, 7129 5 {16, 19, 22, 22 {1, 2, 4, 5, 7,

classifier 23, 28, 29} 27, 28} 11, 13, 14, 16–
20, 22–29, 33}

The performance of the classifiers performing best on test data (34 samples) are reported. The baseline method is
described in Golub (1999) and SVM RFE is used for feature (gene) selection (see text). For each combination of
SVM or Baseline genes and SVM or Baseline classifier, the corresponding number of genes, the number of errors
at zero rejection and the number of rejections at zero error are shown in the table. The number of genes refers
to the number of genes of the subset selected by the given method yielding best classification performance. The
patient id numbers of the classification errors are shown in brackets. For comparison, we also show the results
with no gene selection.
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Figure 3. Best sets of 16 genes (Leukemia data). In matrices (a) and (c), the columns represent different genes
and the lines different patients from the training set. The 27 top lines are ALL patients and the 11 bottom lines are
AML patients. The gray shading indicates gene expression: the lighter the stronger. (a) SVM best 16 genes. Genes
are ranked from left to right, the best one at the extreme left. All the genes selected are more AML correlated. (b)
Weighted sum of the 16 SVM genes used to make the classification decision. A very clear ALL/AML separation
is shown. (c) Baseline method (Golub, 1999) 16 genes. The method imposes that half of the genes are AML
correlated and half are ALL correlated. The best genes are in the middle. (d) Weighted sum of the 16 baseline
genes used to make the classification decision. The separation is still good, but not as contrasted as the SVM
separation.

the muscle index is a quantity computed by Alon et al. (1999) that reflects the muscle cell
contents of a given sample. Most normal samples have a higher muscle index than tumor
samples. However, the support vectors do not show any such trend. There is a mix of normal
and cancer samples with either high or low muscle index.
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Table 6. Best classifiers on test data (Leukemia data).

SVM RFE Baseline feature selection No feature selection

Error # Reject # Error # Reject # Error # Reject #
Selection
method

classifier #genes (0 rej.) (0 error) #genes (0 rej.) (0 error) #genes (0 rej.) (0 error)

SVM
classifier 8 3 {36, 34, 29 8 5 {28, 36, 11, 24 2000 5 {36, 34, −36, 30

−36} 34, −36} −30, −2}
Baseline

classifier 32 4 {36, 34, 21 16 6 {8, 36, 34, 21 2000 7 {8, 36, 34, −37, 21
−36, −30} −36, −30, 2} −36, −30, −2}

The performance of the classifiers performing best on test data (31 samples) are reported. The baseline method is
described in Golub (1999) and SVM RFE is used for feature (gene) selection (see text). For each combination of
SVM or Baseline genes and SVM or Baseline classifier, the corresponding number of genes, the number of errors
at zero rejection and the number of rejections at zero error are shown in the table. The number of genes refers to
the number of genes of the subset selected by the given method yielding best classification performance. The list
of errors is shown between brackets. The numbers indicate the patients. The sign indicates cancer (negative) or
normal (positive). For comparison, we also show the results with no gene selection.

Table 7. Muscle index of 7 the support vectors of an SVM trained on the top 7 genes selected by SVM RFE
(Colon cancer data).

Support vector samples −6 (T) 8 (N) 34 (N) −37 (T) 9 (N) −30 (T) −36 (T)

Muscle index 0.009 0.2 0.2 0.3 0.3 0.4 0.7

Samples with a negative sign are tumor tissues (T). Samples with positive signs are normal tissues (N). We ranked
samples in ordered of increasing muscle index. In most samples in the data set, normal tissues have higher muscle
index than tumor tissues because tumor tissues are richer in epithelial (skin) cells. This is not the case for support
vectors which show a mix of all possibilities. This particular gene subset selected by SVM RFE corresponds to
the smallest number of support vectors (seven). Coincidentally, it also corresponds the smallest number of genes
(seven) that yields zero training error and zero leave-one-out error.

As a feature selection method, SVM RFE differs from the baseline method in two respects:

– The mutual information between features is used by SVMs (SVMs are multivariate
classifiers) whereas the baseline method makes implicit orthogonality assumptions (it
can be considered as a combination of univariate classifiers).

– The decision function is based only on support vectors that are “borderline” cases as
opposed to being based on all examples in an attempt to characterize the “typical” cases.

We assume that the use of support vectors is critical in eliminating irrelevant tissue com-
position related genes. To verify experimentally that hypothesis, we compared SVM RFE
with RFE methods using other multivariate linear discriminant functions that do not make
orthogonality assumptions but attempt to characterize the “typical” cases.

We chose two discriminant functions:

– The Fisher linear discriminant also called Linear Discriminant Analysis (LDA) (see e.g.
Duda, 1973) because the baseline method approximates Fisher’s linear discriminant by
making orthogonality assumptions. We compute LDA by solving a generalized eigen-
value problem (Duda, 1973).
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– The Mean-Squared-Error (MSE) linear discriminant computed by Pseudo-inverse (Duda,
1973), because when all training examples are support vectors the pseudo-inverse solution
is identical to the SVM solution. The MSE discriminant is obtained by calculating
[w, b]T = [X, 1]T ([X, 1][X, 1]T )−1y, where X = [x1, x2, . . . xk, . . . x�]T , y = [y1, y2,

. . . yk, . . . y�]T , and 1 is an � dimensional vector of ones. This requires only the inversion
of an (�, �) matrix.

We show the result of comparison in figure 4. All multivariate methods outperform the
baseline method and reach 100% leave-one-out accuracy for at least one value of the number
of genes. LDA may be at a slight disadvantage on these plots because, for computational
reasons, we used RFE by eliminating chunks of genes that decrease in size by powers of
two. Other methods use RFE by eliminating one gene at a time.

Down to 4 genes, SVM RFE shows better performance than all the other methods. We
examined the genes ranking 1 through 64 for all the methods studied. The first gene that

Figure 4. Comparison of feature (gene) selection methods (Colon cancer data). We varied the number of genes
selected by Recursive Feature Elimination (RFE) with various methods. Training was done on the entire data set
of 62 samples. The curves represent the leave-one-out success rate for the various feature selection methods. Top
black: SVM RFE. Darkgray: Linear Discriminant Analysis RFE. Lightgray: Mean Squared Error (Pseudo-inverse)
RFE. Bottom black: Baseline method (Golub, 1999). The solid line indicates that the classifier used is an SVM.
The dashed line indicates that the classifier used is the same as the one used to select the genes. This corresponds
to a single experiment for SVM. For MSE, the dashed and solid lines overlap. For LDA we could not compute
the dashed line, for computational reasons. The baseline method performs slightly better when used with its own
classifier. SVM RFE gives the best results down to 4 genes.
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is related to tissue composition and mentions “smooth muscle” in its description ranks 5
for the baseline method, 4 for LDA, 1 for MSE and only 41 for SVM. Therefore, this is
an indication that SVMs might make a better use of the data than the other methods via
the support vector mechanism. They are the only method tested that effectively eliminates
tissue composition related genes while providing highly accurate separations with a small
subset of genes. In the discussion section (Section 6), we propose a qualitative explanation
of the SVM feature selection mechanism.

5.3. Results validation with the biology literature

In Section 5.2, we found that SVM RFE eliminates from its top ranked genes smooth
muscle genes that are likely to be tissue composition related. In this section, we individually
checked the seven top ranked genes for relevance in Colon cancer diagnosis (Table 8).

Table 8. SVM RFE to ranked genes (Colon cancer data).

Rk Expression GAN Description Possible function/relation to Colon cancer

7 C > N H08393 Collagen alpha 2(XI) chain (Homo Collagen is involved in cell adhesion. Colon
sapiens) carcinoma cells have collagen degrading

activity as part of the metastatic process
(Karakiulakis, 1997)

6 C > N M59040 Human cell adhesion molecule CD44 is upregulated when colon
(CD44) mRNA, complete cds adenocarcinoma tumor cells transit to the

metastatic state (Ghina, 1998)

5 C > N T94579 Human chitotriosidase precursor Another chitinase (BRP39) was found to
mRNA, complete cds. play a role in breast cancer. Cancer cells

overproduce this chitinase to survive
apoptosis (Aronson, 1999).

4 N > C H81558 Procyclic form specific polypeptide Clinical studies report that patients infected
B1-alpha precursor (Trypanosoma by Trypanosoma (a colon parasite) develop
brucei brucei) resistance against colon cancer

(Oliveira, 1999).

3 N > C R88740 ATP synthase coupling factor 6, ATP synthase is an enzyme that helps
mitochondrial precursor (human) build blood vessels that feed the tumors

(Mozer, 1999).

2 C > N T62947 60S ribosomal protein L24 May play a role in controlling cell growth
(Arabidopsis thaliana) and proliferation through the selective

translation of particular classes of mRNA.

1 N > C H64807 Placental folate transporter (Homo Diminished status of folate has been with
translation of sapiens) enhanced risk of colon cancer

(Walsh, 1999).

The entire data set of 62 samples was used to select genes with SVM RFE. Genes are ranked in order of increasing
importance. The first ranked gene is the last gene left after all other genes have been eliminated. Expression: C > N
indicates that the gene expression level is higher in most cancer tissues; N > C indicates that the gene expression
level is higher in most normal tissues. GAN: Gene Accession Number. All the genes in this list have some plausible
relevance to the cancer vs. normal separation.
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The number seven corresponds to the minimum number of support vectors, a criterion
sometimes used for “model selection”. We did not attempt to find whether it was particularly
relevant. Our findings are based on a bibliographic search and have been reviewed by one
of us who is a medical doctor. However, they have not been subject to any experimental
verification.

The role of some of the best-ranked genes can be easily explained because they code for
proteins whose role in colon cancer has been long identified and widely studied. Such is
the case of CD44, which is upregulated when colon adenocarcinoma tumor cells become
metastatic (Ghina, 1998) and collagen, which is involved in cell adhesion. Colon carci-
noma cells are known to have collagen degrading activity as part of the metastatic process
(Karakiulakis, 1997). The presence of some other genes in our list can be explained by very
recently published studies. For example, the role of ATP synthase, as an enzyme that helps
build blood vessels (tumor angiogenesis), to feed the tumors was published only a year ago
(Mozer, 1999).

Diminished status of folate has been associated with enhanced risk of colon cancer in a
recent clinical study (Walsh, 1999). To this date, however, no known biochemical mechanism
explained the role of folate in colon cancer. Knowing that gene H64807
(Placental folate transporter) was identified as one of the most discriminant genes in the colon
cancer vs. normal separation can give researchers a clue where to start to investigate such
mechanisms.

In the case of human chitotriosidase, one needs to proceed by analogy with another
homologous protein of the same family whose role in another cancer is under study: another
chitinase (BRP39) was found to play a role in breast cancer. Cancer cells overproduce this
chitinase to survive apoptosis (Aronson, 1999). An important increase in chitotriosidase
activity has been noticed in clinical studies of Gauchers disease patients, an apparently
unrelated condition. To diagnose Gauchers disease the chitotriosidase enzyme can be very
sensitively measured. The plasma or serum prepared from less than a droplet of blood
is sufficient for the chitotriosidase measurement (Aerts, 1996). This opens the door to a
possible new diagnosis test for colon cancer as well.

In addition we identified 60S ribosomal protein L24 (Arabidopsis thaliana). This non-
human protein is homologous to a human protein located on chromosome 6. Like other
ribosomal proteins, it may play a role in controlling cell growth and proliferation through
the selective translation of particular classes of mRNA.

Finally, one of our most intriguing puzzles has been the “procyclic form specific polypep-
tide B1-alpha precursor (Trypanosoma brucei brucei)”. We first found out that Trypanosoma
is a tiny parasitic protozoa indigenous to Africa and South America. We thought this
may be an anomaly of our gene selection method or an error in the data, until we
discovered that clinical studies report that patients infected by Trypanosoma (a colon
parasite) develop resistance against colon cancer (Oliveira, 1999). With this dis-
covered knowledge there may be the possibility for developing a vaccine for colon
cancer.

To complete our study, we proceeded similarly with the Leukemia data by running our
gene selection method on the entire data set of 72 samples. We examined the four top ranked
genes (Table 9). The number four corresponds to the minimum number of support vectors
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Table 9. SVM RFE top ranked genes (Leukemia data).

Rk Expression GAN Description Possible function/relation to Leukemia

4 AML > ALL U59632 Cell division control related hCDCrel-1 is a partner
protein (hCDCrel-1) gene of MLL in some leukemias (Osaka, 1999).
mRNA

3 AML > ALL U82759 GB DEF = Homeodomain Hoxa9 collaborates with other genes to produce
protein HoxA9 mRNA highly aggressive acute leukemic disease

(Thorsteinsdottir, 1999).

2 ALL > AML HG1612 MacMarcks Tumor necrosis factor-alpha rapidly stimulate
Marcks gene transcription in human
promyelocytic leukemia cells (Harlan, 1991).

1 AML > ALL X95735 Zyxin Encodes a LIM domain protein localized at focal
contacts in adherent erythroleukemia cells
(Macalma, 1996).

The entire data set of 72 samples was used to select genes with SVM RFE. Genes are ranked in order of increasing
importance. The first ranked gene is the last gene left after all other genes have been eliminated. Expression:
ALL > AML indicates that the gene expression level is higher in most ALL samples; AML > ALL indicates that
the gene expression level is higher in most AML samples; GAN: Gene Accession Number. All the genes in this
list have some plausible relevance to the AML vs. ALL separation.

(5 in this case). All four genes have some relevance to leukemia and deserve a more detailed
analysis to understand their exact role in discriminating between AML and ALL variants.

In this last experiment, we also noted that the smallest number of genes that separate the
whole data set without error is two (Zyxin and MacMarcks). For this set of genes, there is
also zero leave-one-out error. In contrast, the baseline method (Golub, 1999) always yields
at least one training error and one leave-one-out error. One training error can be achieved
with a minimum of 16 genes and one leave-one-out error with a minimum of 64 genes.

6. Other explorations and discussion

6.1. Computational considerations

The fastest methods of feature selection are correlation methods: for the data sets under
study, several thousands of genes can be ranked in about one second by the baseline method
(Golub, 1999) with a Pentium processor.

The second fastest methods use as ranking criterion the weights of a classifier trained
only once with all the features. Training algorithms such as SVMs or Pseudo-inverse/MSE
require first the computation of the (�, �) matrix H of all the scalar products between the
� training patterns. The computation of H increases linearly with the number of features
(genes) and quadratically with the number of training patterns. After that, the training time
is of the order of the time required to invert matrix H . For optimized SVM algorithms,
training may be faster than inverting H , if the number of support vectors is small compared
to �. For the data sets under study, the solution is found in a couple of seconds on a Pentium
processor, with non-optimized Matlab code.
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Recursive Feature Elimination (RFE) requires training multiple classifiers on subsets of
features of decreasing size. The training time scales linearly with the number of classifiers to
be trained. Part of the calculations can be reused. Matrix H does not need to be re-computed
entirely. The partial scalar products of the eliminated features can be subtracted. Also, the
coefficients α can be initialized to their previous value. Our Matlab implementation of SVM
RFE on a Pentium processor returns a gene ranking in about 15 minutes for the entire Colon
dataset (2000 genes, 62 patients) and 3 hours on the Leukemia dataset (7129 genes, 72
patients). Given that the data collection and preparation may take several months or years,
it is quite acceptable that the data analysis takes a few hours.

All our feature selection experiments using various classifiers (SVM, LDA, MSE) indi-
cated that better features are obtained by using RFE than by using the weights of a single
classifier (see Section 6.2 for details). Similarly, better results are obtained by eliminating
one feature at a time than by eliminating chunks of features. However, there are only signif-
icant differences for the smaller subset of genes (less than 100). This suggests that, without
trading accuracy for speed, one can use RFE by removing chunks of features in the first few
iterations and then remove one feature at a time once the feature set reaches a few hundreds.
This may become necessary if the number of genes increases to millions, as is expected to
happen in the near future.

The scaling properties of alternative methods that have been applied to other “feature
selection” problems are generally not as attractive. In a recent review paper (Blum, 1997), the
authors mention that “few of the domains used to date have involved more than 40 features”.
The method proposed in Shürmann (1996), for example, would require the inversion of a
(n, n) matrix, where n is the total number of features (genes).

6.2. Analysis of the feature selection mechanism of SVM-RFE

6.2.1. Usefulness of RFE. In this section, we question the usefulness of the computation-
ally expensive Recursive Feature Elimination (RFE). In figure 5, we present the performance
of classifiers trained on subsets of genes obtained either by “naively” ranking the genes with
(wi )

2, which is computationally equivalent to the first iteration of RFE, or by running RFE.
RFE consistently outperforms the naı̈ve ranking, particularly for small gene subsets.

The naı̈ve ranking and RFE are qualitatively different. The naı̈ve ranking orders features
according to their individual relevance. The RFE ranking is a feature subset ranking. The
nested feature subsets contain complementary features not necessarily individually most
relevant. This is related to the relevance vs. usefulness distinction (Kohavi, 1997).

The distinction is most important in the case of correlated features. Imagine, for example,
a classification problem with 5 features, but only 2 distinct features both equally useful: x1,
x1, x2, x2, x2. A naı̈ve ranking may produce weight magnitudes x1(1/4), x1(1/4), x2(1/6),
x2(1/6), x2(1/6), assuming that the ranking criterion gives equal weight magnitudes to
identical features. If we select a subset of two features according to the naı̈ve ranking, we
eliminate the useful feature x2 and incur possible classification performance degradation.
In contrast, a typical run of RFE would produce:

first iteration x1(1/4), x1(1/4), x2(1/6), x2(1/6), x2(1/6),
second iteration x1(1/4), x1(1/4), x2(1/4), x2(1/4)
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Figure 5. Effect of Recursive Feature Elimination (Colon cancer data). In this experiment, we compared the
ranking obtained by RFE with the naı̈ve ranking obtained by training a single classifier and using the magnitude of
the weights as ranking coefficient. We varied the number of top ranked genes selected. Training was done on the
entire data set of 62 samples. The curves represent the leave-one-out success rate for the various feature selection
methods, using an SVM classifier. The colors represent the classifier used for feature selection. Top black: SVM.
Darkgray: Linear Discriminant Analysis. Lightgray: Mean Squared Error (Pseudo-inverse). We do not represent
the baseline method (Golub, 1999) since RFE and the naı̈ve ranking are equivalent for that method. The solid line
corresponds to RFE. The dashed line corresponds to the naı̈ve ranking. RFE consistently outperforms the naı̈ve
ranking, for small gene subsets.

third iteration x2(1/2), x1(1/4), x1(1/4)

fourth iteration x1(1/2), x2(1/2)

fifth iteration x1(1)

Therefore if we select two features according to RFE, we obtain both x1 and x2, as desired.
The RFE ranking is not unique. Our imagined run produced: x1 x2 x1 x2 x2, correspond-

ing to the sequence of eliminated genes read backwards. Several other sequences could
have been obtained because of the symmetry of the problem, including x1 x2 x2 x1 x2 and
x2 x1 x2 x1 x2. We observed in real experiments that a slight change in the feature set often
results in a completely different RFE ordering. RFE alters feature ordering only for multi-
variate classification methods that do not make implicit feature orthogonality assumptions.
The method of Golub (1999) yields the same ordering for the naı̈ve ranking and RFE.

6.2.2. Feature selection mechanism of SVMs. In the experimental section (Section 5),
we conjectured that SVMs have a feature selection mechanism relying on support vectors
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that distinguishes them from “average case” methods. In this section, we illustrate on an
example what such a mechanism could be.

In figure 6, we constructed a two-dimensional classification example. The dots were
placed such that feature x2 separates almost perfectly all examples with a small variance,
with the exception of one outlier. Feature x1 separates perfectly all examples but has a
higher variance. We think of feature x1 as the relevant feature (a cancer-related gene) and as
feature x2 as the irrelevant feature (a tissue composition related gene): most examples are
very well separated according to tissue composition, but one valuable outlier contradicts
this general trend. The baseline classifier (Golub, 1999) prefers feature x2. But the SVM
prefers feature x1.

Therefore the SVM feature selection critically depends on having clean data since the
outliers play an essential role. In our approach, the two problems of selection of useful
patterns (support vectors) and selection of useful features are tightly connected. Other
approaches consider the two problems independently (Blum, 1997).

6.2.3. Importance of preprocessing. The preprocessing used in Section 5 has a strong
impact on SVM-RFE. From each feature, we subtract its mean and divide the result by its
standard deviation. This ensures that feature scales are comparable. Such preprocessing is
unnecessary if scaling is taken into account in the cost function or in the similarity measure.

6.3. Generalization of SVM RFE to the non-linear case and other kernel methods

The method of eliminating features on the basis of the smallest change in cost function
described in Section 2.5 can be extended to the non-linear case and to all kernel methods in
general (Weston, 2000(b)). One can make computations tractable by assuming no change
in the value of the α’s. Thus one avoids having to retrain a classifier for every candidate
feature to be eliminated.

Specifically, in the case of SVMs (Boser, 1992; Vapnik, 1998; Cristianini, 1999), the cost
function being minimized (under the constraints 0 ≤ αk ≤ C and

∑
k αk yk = 0) is:

J = (1/2)αT Hα − αT 1,

where H is the matrix with elements yh yk K (xh, xk), K is a kernel function that measures
the similarity between xh and xk , and 1 is an � dimensional vector of ones. An example of
such a kernel function is K (xh, xk) = exp(−γ ‖xh − xk‖2).

To compute the change in cost function caused by removing input component i , one
leaves the α’s unchanged and one re-computes matrix H . This corresponds to computing
K(xh(−i), xk(−i)), yielding matrix H(−i), where the notation (−i) means that component
i has been removed. The resulting ranking coefficient is:

D J (i) = (1/2)αT Hα − (1/2)αT H(−i)α

The input corresponding to the smallest difference D J (i) shall be removed. The proce-
dure can be iterated to carry out Recursive Feature Elimination (RFE).
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Figure 6. Feature selection and support vectors. This figure contrasts on a two dimensional classification example
the feature selection strategy of “average case” type methods and that of SVMs. The white and black dots represent
examples of class (−) and (+) respectively. The decision boundary D(x) = 0 seperates the plane into two half
planes D(x) < 0 ⇒ x in class (−), and D(x) > 0 ⇒ x in class (+). There is a simple geometric interpretation of the
feature ranking criterion based on the magnitude of the weights: for slopes larger than 45 degrees, the preferred
feature is x1, otherwise it is x2. The example was constructed to demonstrate the qualitative difference of the
methods. Feature x2 separates almost perfectly all examples with a small variance, with the exception of one
outlier. Feature x1 seperates perfectly all examples but has a higher variance. (a) Baseline classifier (Golub, 1999).
The preferred feature is x2. (b) SVM. The preferred feature is x1.



GENE SELECTION FOR CANCER CLASSIFICATION 417

Table 10. Non-linear SVM RFE.

Training set size Top 2 features selected No feature selection

30 0.1775 ± 0.1676 0.4691 ± 0.0233

40 0.1165 ± 0.1338 0.4654 ± 0.0236

100 0.0350 ± 0.0145 0.4432 ± 0.0259

1000 0.0036 ± 0.0024 0.3281 ± 0.0218

Fifty extra noisy dimensions were added to a 2 by 2 two checker board
(XOR problem). All 52 dimensions were generated with uniform distribu-
tion on −0.5 to 0.5. The table shows averaged performance and standard
deviation on a test set of 500 examples over 30 random trials using a
polynomial classifier of degree 2.

In the linear case, K (xh, xk) = xh · xk and αT Hα = ‖w‖2. Therefore D J (i) = (1/2)

(wi)2. The method is identical the one we proposed and studied in the previous sections for
linear SVMs.

Computationally, the non-linear kernel version of SVM RFE is a little more expensive
than the linear version. However, the change in matrix H must be computed for support
vectors only, which makes it affordable for small numbers of support vectors. Additionally,
parts of the calculation such as the dot products xh · xk between support vectors can be
cached.

We performed preliminary experiments on a classical example of non-linear classification
problem, the XOR problem, which indicate that the method is promising. We added to a
2 by 2 two checker board 50 extra noisy dimensions, all 52 dimensions generated with
uniform distribution on −0.5 to 0.5. We averaged performance over 30 random trials with
a polynomial kernel of degree 2, K (x, y) = (x · y + 1)2. Using our feature ranking method
we selected the top two features. For 30 training examples the correct two features were
selected 22/30 times. For 40 training examples the correct two features were selected 28/30
times. We also compared classification performance with and without feature selection
(Table 10). The SVM performs considerably better with feature selection on this problem.

The idea of keeping the α’s constant to compute D J can be extended to the multi-class
problem (Bredensteiner, 1999) other kernel methods such as KPCA (Schölkopf, 1998),
non-classification problems such as regression, density estimation (see e.g. Vapnik, 1998)
and clustering (Ben-Hur, 2000). It is not limited to RFE type of search. It can be used, for
instance, for forward feature selection (progressively adding features), a strategy recently
used, for example, in Smola (2000).

6.4. Other SVM feature selection methods

6.4.1. Penalty-based methods. We explored other methods of feature selection using
SVMs. One idea is to formulate the optimization problem in a way that a large number
of weights will be forced to zero. We tried the following linear programming formulation



418 I. GUYON ET AL.

of the problem:




Minimize over wi , w
∗
i and ξk∑

i

(wi + w∗
i ) + C

∑
k

ξk

subject to:

yk[(w∗ − w) · xk + b] ≥ 1 − ξk

wi > 0

w∗
i > 0

i = 1 · · · n, k = 1 · · · �

where C is a positive constant (penalty parameter).
Although the idea is quite attractive, we did not obtain in our experiment results that

matched the performance of SVM RFE. Similar ideas have been proposed and studied by
other authors (Bradley, 1998(a) and (b)). One drawback of penalty-based methods is that the
number of features chosen is an indirect consequence of the value of the penalty parameter.

6.4.2. Feature scaling methods. The magnitude of the weights of a linear discriminant
function is a scaling factor of the inputs. The idea of ranking features according to scaling
factors subject to training therefore generalizes the scheme that we have been using. Non-
linear discriminant functions such as neural networks and kernel methods can incorporate
such scaling factors. Several authors (Mukherjee, 2000; Jebera, 2000; Chapelle, 2000;
Weston, 2000(a)) have recently proposed and studied feature selection methods for SVMs
that incorporate scaling factors into the kernel:

K A(x, y) = K (Ax, Ay)

where A is a diagonal matrix of scaling factors a1, a2, . . . an . Training is performed by
iterating:

1. Optimize the α’s for a fixed A (regular SVM training).
2. Optimize A for fixed α’s by gradient descent.

There are various flavors of the method depending on which cost function is being optimized
in step 2 and which optimization method is used. The scaling factors are used to assess feature
relevance. It is possible to set a threshold on feature relevance or select a given number of
most relevant features.

In Mukherjee (2000), the authors report on the leukemia data (Golub, 1999) zero error
with no rejects on the test set using the top 40 genes. They were able to classify 32 of 34
cases correctly using 5 genes. In Chapelle (2000), the authors achieve 1 error on the test
set with 5 genes using the same data set. In Weston (2000(a)), the authors report on the
Leukemia data zero error with 20 genes and 1 error with 5 genes. On the colon cancer data
(Alon, 1999), the same authors report 12.8% average error of 50 splits of the data into 50
training examples and 12 test examples.
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We note that the least relevant feature(s) could be eliminated and the process iter-
ated as in RFE, but no results on this computationally expensive approach have been
reported.

One drawback of feature scaling methods is that they rely on gradient descent. As such,
they are sensitive to the choice of the gradient step, prone to falling in local minima and
may be slow for a large number of features.

6.4.3. Wrapper methods and other search techniques. SVM RFE improves feature selec-
tion based on feature ranking by eliminating the orthogonality assumptions of correlation
methods. Yet, it remains a greedy sub-optimal method. It generates nested subsets of fea-
tures. This means that the selected subset of m features is included in the subset of m + 1
features. But, assume that we found a feature singleton that provides the best possible
separation. There is no guarantee that the best feature pair will incorporate that singleton.
Feature ranking methods miss that point.

Combinatorial search is a computationally intensive alternative to feature ranking. To
seek an optimum subset of m features or less, all combinations of m features or less are
tried. The combination that yields best classification performance (on a test set or by cross-
validation) is selected. The classifier is used as a so-called “wrapper” in the feature selection
process (Kohavi, 1997).

We tried to refine our optimum feature set by combinatorial search using SVMs in
a wrapper approach. We started from a subset of genes selected with SVM RFE. We
experimented with the leukemia data, using the training/test data split. We could easily
find a pair of genes that had zero leave-one-out error and a very wide positive extremal
margin. Yet, the error rate on the test set was very poor (13/34 errors).

The failure of these explorations and the success of RFE indicate that RFE has a built in
regularization mechanism that we do not understand yet that prevents overfitting the training
data in its selection of gene subsets. Other authors have made similar observations for other
greedy algorithms (Kohavi, 1997). Placing constraints on the search space undoubtedly
contributes to reduce the complexity of the learning problem and prevent overfitting, but a
more precise theoretical formulation is still missing.

As a compromise between greedy methods and combinatorial search, other search meth-
ods could be used such as beam search or best first search (Kohavi, 1997).

7. Conclusions and future work

SVMs lend themselves particularly well to the analysis of broad patterns of gene expression
from DNA micro-array data. They can easily deal with a large number of features (thousands
of genes) and a small number of training patterns (dozens of patients). They integrate pattern
selection and feature selection in a single consistent framework.

We proposed and applied the SVM method of Recursive Feature Elimination (RFE)
to gene selection. We showed experimentally on two different cancer databases that tak-
ing into account mutual information between genes in the gene selection process impacts
classification performance. We obtained significant improvements over the baseline method
that makes implicit orthogonality assumptions. We also verified the biological relevance of
the genes found by SVMs. The top ranked genes found by SVM all have a plausible relation
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to cancer. In contrast, other methods select genes that are correlated with the separation at
hand but not relevant to cancer diagnosis.

The RFE method was demonstrated for linear classifiers, including SVMs. This simple
method allows us to find nested subsets of genes that lend themselves well to a model selec-
tion technique that finds an optimum number of genes. Our explorations indicate that RFE
is much more robust to data overfitting than other methods, including combinatorial search.

Further work includes experimenting with the extension of the method to non-linear
classifiers, to regression, to density estimation, to clustering, and to other kernel methods.
We envision that linear classifiers are going to continue to play an important role in the
analysis of DNA micro-array because of the large ratio number of features over number of
training patterns.

Feature ranking methods do not dictate the optimum number of features to be selected.
An auxiliary model selection criterion must be used for that purpose. The problem is
particularly challenging because the leave-one-out error by itself is of little use since it is
zero for a large number of gene subsets. Possible criteria that we have explored include the
number of support vectors and a combination of the four metrics of classifier quality (error
rate, rejection rate, extremal margin, and median margin) computed with the leave-one-out
procedure. We have also explored with adding penalties for large numbers of features, using
bounds on the expected error rate. Finding a good model selection criterion is an important
avenue of experimental and theoretical research.

Greedy methods such as RFE are known by experimentalists to be less prone to overfitting
than more exhaustive search techniques. A learning theoretic analysis of the regularization
properties of SVM RFE remains to be done.

Finally, we have directed our attention to feature selection methods that optimize the
feature subset for a given family of classifier (e.g. linear discriminant). More generally, the
simultaneous choice of the learning machine and the feature subset should be addressed,
an even more complex and challenging model selection problem.
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