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Abstract wise non-linearity (a sigmoid function). When multiple
such levels are stacked, the resulting architecture isnesse
We present an unsupervised method for |earning a hier- tially identical to the Neocognitron7], the Convolutional
archy of sparse feature detectors that are invariant to $mal Network [L3, 1(], and the HMAX, or so-called “Standard
shifts and distortions. The resulting feature extractonco Model” architecture 10, 17]. All of those models use al-
sists of multiple convolution filters, followed by a point- ternating layers of convolutional feature detectors (resi
wise sigmoid non-linearity, and a feature-pooling layer centof Hubel and Wiesel'simple cell$, and local pooling
that computes the max of each filter output within adja- and subsampling of feature maps using a max or an averag-
cent windows. A second level of larger and more invari- ing operation (reminiscent of Hubel and Wiesalsmplex
ant features is obtained by training the same algorithm cells). A final layer trained in supervised mode performs
on patches of features from the first level. Training a su- the classification. We will call this general architecture t
pervised classifier on these features yields 0.64% error onmulti-stage Hubel-Wiesel architectureln the Neocogni-
MNIST, and 54% average recognition rate on Caltech 101 tron, the feature extractors are learned with a rather ad-ho
with 30 training samples per category. While the result- unsupervised competitive learning method. 10, [1 7], the
ing architecture is similar to convolutional networks, the first layer is hard-wired with Gabor filters, and the second
layer-wise unsupervised training procedure alleviates th layer is trained by feeding natural images to the first layer,
over-parameterization problems that plague purely super- and simply storing its outputs as templates. In Convolu-
vised learning procedures, and yields good performance tional Networks [ .3, 10, all the filters are learned with a
with very few labeled training samples. supervised gradient-based algorithm. This global optmiz
tion process can achieve high accuracy on large datasets
such as MNIST with a relatively small number of features
. and filters. However, because of the large number of train-
1. Introduction able parameters, Convolutional Networks seem to require
a large number of examples per class for training. Train-
ing the lower layers with an unsupervised method may help
reduce the necessary number of training samples. Several
recent works have shown the advantages (in terms of speed
and accuracy) of pre-training each layer of a deep network
in unsupervised mode, before tuning the whole system with

The use of unsupervised learning methods for building
feature extractors has a long and successful history in pat
tern recognition and computer vision. Classical methods
for dimensionality reduction or clustering, such as Prnci
pal Component Analysis and K-Means, have been used rou

tinely in numerous V'S'O_n app||cat|o_n_$$, 18] _ . agradient-based algorithm,[3, 19). The present work is

In the context of object recognition, a particularly in- jngnired by these methods, but incorporates invariande at i
teresting and challenging question is whether unsupefvise ¢,re  Our main motivation is to arrive at a well-principled
learning can be used to leamvariant features The abil-  method for unsupervised training of invariant featureduier
ity to learn robust invariant representations from a limite  -hies. Once high-level invariant features have been taine
amount of labeled data is a crucial step towards building aith yniabeled data, a classifier can use these features to

solution to the object recognition problem. In this paper, ¢|assify images through supervised training on a small num-
we propose an unsupervised learning method for learningp g, of samples.

hierarchies of feature extractors that are invariant to $ma

distortions Each level in the hierarchy is composed of two Currently, the main way to build invariant representa-
layers: (1) a bank of local filters that are convolved with the tions is to compute local or global histograms (or bags) of
input, and (2) a pooling/subsampling layer in which each sparse, hand-crafted features. These features geneaaély h
unit computes the maximum value within a small neigh- invariant properties themselves. This includes SIE7] [
borhood of each filter's output map, followed by a point- features and their many derivatives, such as affine-innaria
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RECONSTRUCTION ERROR RECONSTRUCTION ERROR the model can be trained to produce features that are not
cosT cost only invariant, but also sparse. An image patch can be mod-
A 3

DECODER

DECODER eled as a collection of features placed at particular looati
reatunes | rmansrommmon B | AT within the patch. A patch can be reconstructed from the list
€009 foaraneres v foo0E) of featu_res that are present in the patch together with their

ol crconen z respective locations. In the simplest case, the featuees ar

ENCODER templates (or basis functions) that are combined addjtivel

INPUT ¥ INPUT ¥ to reconstruct a patch. If we assume that each feature can
Standard Feature Extractor Invariant Feature Extractor appear at mOSt once Wlthln a patCh, then com put'ng a Sh|ft'

invariant representation can come down to applying each
Figure 1. Left: generic architecture of encoder-decodeadigm feature d_etector at all locations in_the patch, and recgrdin
for unsupervised feature leaming. Right: architecturestuft- ~ the location where the response is the largest. Hence the
invariant unsupervised feature learning. The featureovegindi- invariant feature vector records the presence or absence of
cateswhatfeature is present in the input, while thransformation each feature in the patch, while the transformation parame-
parameterd/ indicatewhereeach feature is present in the input.  ters record the location at which each feature output is the
largest. In general, the feature outputs need not be binary.
The overall architecture is shown in fig(d). Before de-
patches [1]. However learningthe features may open the scribing the learning algorithm, we show how a trained sys-
door to more robust methods with a wider spectrum of ap- tem operates using a toy example as an illustration. Each
plications. In most existing unsupervised feature le@nin input sample is a binary image containing two intersecting
methods, invariance appears as an afterthought. For exampars of equal length, as shown in figa). Each bar is 7
ple, in [20, 17, 19, the features are learned without regard pixels long, has 1 of 4 possible orientations, and is plated a
to invariance. The invariance comes from the feature pool- one of 25 random locations %) at the center of a 1717
ing (complex cell) layer, which is added after the training image frame. The inputimage is passed through 4 convolu-
phase is complete. Here, we propose to integrate the featuréional filters of size %7 pixels. The convolution of each
pooling within the unsupervised learning architecture. detector with the input produces anx11 feature map.
Many unsupervised feature learning methods are basedrhemax-poolindayer finds the largest value in each feature
on the encoder-decoder architecture depicted inlLfig.he map, recording the position of this value as transforma-
input (an image patch) is fed to the encoder which producestion parameterfor that feature map. The invariant feature
a feature vector (a.k.a a code). The decoder module thervector collects these max values, recording the presence or
reconstructs the input from the feature vector, and the re-absence of each feature independently of its position. No
construction error is measured. The encoder and decodematter where the two bars appear in the input image, the re-
are parameterized functions that are trained to minimiee th sult of themax-poolingoperation will be identical for two
average reconstruction error. In most algorithms, the codeimages containing bars of identical orientations at déffer
vector must satisfy certain constraints. With PCA, the di- locations. The reconstructed patch is computed by placing
mension of the code must be smaller than that of the input.each code value at the proper location in the decoder fea-
With K-means, the code is the index of the closest proto- ture map, using the transformation parameters obtained in
type. With Restricted Boltzmann Machineq,[the code  the encoder, and setting all other values in the feature maps
elements are stochastic binary variables. In the method proto zero. The reconstruction is simply the sum of the decoder
posed here, the code will be forced todmarse with only basis functions (which are essentially identical to theeor

a few components being non-zero at any one time. sponding filters in the encoder) weighted by the feature map
The key idea to invariant feature learning is to representvalues at all locations.
an input patch with two components: Tilvariant fea- A solution to this toy experiment is one in which the in-

ture vector which representwhatis in the image, anthe variant representation encodes the information abouttwhic
transformation parametenshich encodesvhereeach fea-  orientations are present, while the transformation parame
ture appears in the image. They may contain the preciseters encode where the two bars appear in the image. The
locations (or other instantiation parameters) of the fieetu  oriented bar detector filters shown in the figure are in fact
that compose the input. The invariant feature vector andthe ones discovered by the learning algorithm described in
the transformation parameters are both produced by the enthe next section. In general, this architecture is not &ahit
coder. Together, they contain all the information necgssar to binary images, and can be used to compute shift invariant
for the decoder to reconstruct the input. features with any number of components.

2. Architecture for Invariant Feature Learning 3. Learning Algorithm

We now describe a specific architecture for learning  The encoder is given by two functionsyy =
shift-invariant features. Sectiof®sand4 will discuss how Ency(Y;We) andU = Ency(Y;We) whereY is the
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Figure 2. Left Panel: (a) sample images from the “two bardaskt. Each sample contains two intersecting segmentxdbma
orientations and random positions. (b) Non-invariantdezd learned by an auto-encoder with 4 hidden units. (ct-8ii&riant decoder
filters learned by the proposed algorithm. The algorithmditie® most natural solution to the problem. Right Panel (adhitecture of the
shift-invariant unsupervised feature extractor appl@the two bars dataset. The encoder convolves the input imihe filter bank and
computes the max across each feature map to produce th@ivapresentation. The decoder produces a reconstnuayivaking the
invariant feature vector (the “what”), and the transforimaparameters (the “where”). Reconstructions is achiéyeadding each decoder
basis function (identical to encoder filters) at the poasifindicated by the transformation parameters, and weighyetie corresponding
feature component.

input image,W¢ is the trainable parameter vector of the ent descent so as to minimize the decoder enedgyip
encoder (the filters)Z is the invariant feature vector, and —3||Y — Dec(Z*,U; Wp)||?/OWp.

U is the transformation parameter vector. Similarly, the de- 4. update the weights in the encoder by one step of gra-
coder is a functioMdec(Z, U; Wp) whereWp, is the train- dient descent so as to minimize the encoder energy (using
able parameter vector of the decoder (the basis functions)the optimal codeZ* as target value)AWe < —9||Z* —

The reconstruction erraEp, also called thedecoder en-  Enc(Y,U; W¢)||?/0We.

ergy measures the Euclidean distance between the iviput
and its reconstructio”’p = ||Y — Dec(Z,U; Wp)||?. The
learning architectures slightly different from the ones in
figs. 1 and 2(d): the output of the encoder is not directly
fed to the decoder, but rather is fed to a cost module that
measures the code prediction error, also callecetiender
energy Ec = ||Z — Enc(Y,U; W¢)||?. Learning proceeds

in an EM-like fashion in whiclt¥ plays the role of auxiliary

\rﬁrz'ggjlg' Eor gacvr\]”:r;[r);t, i\gg Sggﬁi\tzecggg’g;?altnnllﬂhe an encoder module are forced to perform an expensive opti-
D T &EC o P ' mization in order to do inference (to find the code) even af-

wvords, we search for a code that minmizes the reconiru 123G the parameters. Note hat gmeral eaning
) ’ . ; ) algorithmis suitable for any encoder-decoder architecture,
tion error, while being not too different from the encoder

output. We describe -linelearning algorithm to learn and not specific to a particular kind of feature or architeztu
put. 10€ aon hing g. choice. Any differentiable module can be used as encoder
We andWp consisting of four main steps:

1. propagate the inpu’ through the encoder to produce or decoder. In parti_cular, we can plug in the encoder.and
tHe redicted cod&, — Enc(Y, U; We) and the transfor- decoder described in the previous section and learn filters
p 0 o C) S that produce shift invariant representations.

mation parameter§ that are then copied into the decoder.

2. keepingU fixed, and usingZ, as initial value for the We tested the proposed architecture and learning algo-

codeZ, minimize the energ¥p + aE,. with respecttothe  rithm on the “two bars” toy example described in the pre-

codeZ by gradient descent to produce the optimal c4ade vious section. In the experiments, both the encoder and the

3. update the weights in the decoder by one step of gradi-decoder are linear functions of the parameters (lineardilte
and linear basis functions), However, the algorithm is not

The decoder is trained to produce good reconstructions
of input images from optimal codes* and, at the same
time, the encoder is trained to give good predictions oféhes
optimal codes. As training proceeds, fewer and fewer iter-
ations are required to get tg*. After training, a single
pass through the encoder gives a good approximation of the
optimal codeZ* and minimization in code space is not nec-
essary. Other basis function models]that do not have



orientations: horizontal, vertical and the two diagonas a

shown in fig.2(a). The encoder contains fou? linear

filters, plus four 1% 11 max-pooling units. The decoder -

contains four %7 linear basis functions. The parameters

are randomly initialized. The learned basis functions are ..'...--.-

shown in fig.2(c), and the encoder filters in fig(d). Af- n...n.i..-

ter training on a few thousand images, the filters converge -

as expected to the oriented bar detectors shown in the fig-

ure. The resulting 4-dimensional representation extcacte Figure 3. Fifty 20< 20 filters learned in the decoder by the sparse

from the input image is translation invariant. These filters @nd shiftinvariant learning algorithm after training oe MNIST

and the corresponding representation differ strikinggyfr ~ J21aset of 2828 digits. A digit is reconstructed as linear com-
hat can be achieved by PCA or an auto-encoder neura ination of a sm:_’;lll subset of these f(_eatures positioned atocb_n

w d by 1 possible location9(x 9), as determined by the transformation

network. For comparison, an auto-encoder neural networkaameters produced by the encoder.

with 4 hidden units was trained on the same data. The filters

(weights of the hidden units) are shown in f&fb). There

is no appearance of oriented bar detectors, and the regultin

restricted to linear encoders and decoders. The inputisnage ---.!--!.n
are 1717 binary images containing two bars in different

codes are not shift invariant. value, i.e. a value close to 1, only if the unit has under-
gone a long enough quiescent period. The parameten-
4. Sparse, Invariant Features trols the sparseness of the code by determining the length

of the time window over which samples are summed@p.

There are well-known advantages to using sparse, overcontrols the gain of the logistic function, with large vadue
complete features in vision: robustness to noise, goadtili  yielding quasi-binary outputs. After training is complete
of the joint space of frequency and location, and good classthe running averages(k) are kept constant, and set to the
separation for subsequent classification[s, 19]. More average of its last 1,000 values during training. With a fixed
importantly, when the dimension of the code in an encoder- ¢;(k), the non-linearity turns into a logistic function with a
decoder architecture is larger than the input, it is necgssa large threshold equal tog(¢;(k — 1)(1 — n)/7).
to limit the amount of information carried by the code, lest . . .
the encoder-decoder may simply learn the identity function A SParse and shift-invariant feature extractor using the
in a trivial way and produce uninteresting features. One way SParsifying logistic above is composed ¢t.) an encoder
to limit the information content of an overcomplete code is Which convolves the input image with a filter bank and se-
to make it sparse. Following.f, the code is made sparse €CtS the largest value in each feature mi@) a decoder
by inserting asparsifying logistimon-linearity between the y\(hlch first transforms the code vector into a sparse a_nd pos-
encoder and the decoder. The learning algorithm is left un-1tive code vector by means of the sparsifying logistic, and
changed. The sparsifying logistic module transforms the then computes a reconstruction from the sparse code using
input code vector into a sparse code vector with positive & additive linear combination of its basis functions ared th
components betweel, 1]. It is a sigmoid function with information given by the transformation parameters.

a Iarge adap'[ive threshold which is automatica”y adjusted Learr“ng the filters in both encoder and decoder is
so that each code unitis only turned on for a small propor- gchieved by the iterative algorithm described in $cln

tion of the training samples. Let us consider theh train-  fig. 3 we show an example of sparse and shift invariant fea-
ing sample and theth component of the code; (k) with  tyres. The model and the learning algorithm were applied to
i € [1.m] wherem is the number of components in the the handwritten digits from the MNIST datasé,[which
code vector. Let; (k) be its corresponding output after the  of consist of quasi-binary of size 2&8. We considered a
sparsifying logistic. Given two parameteyse [0,1] and  set of fifty 20 x 20 filters in both encoder and decoder that
B > 0, the transformation performed by this non-linearity gre applied to the input at 81 locatiors % 9 grid), over

is given by: which the max-pooling is performed. Hence image features
Balk) can move over those 81 positions while leaving the invari-

_g € . N Bz (1—-mn) . ant feature vector unchanged. The sparsifying logistic pa-

ST ) with (k) = e + B Gk =1) (D) meters settingg = 0.015 and3 = 1.5 yielded sparse

feature vectors. Because they must be sparse, the learned
This can be seem as a kind of weighted “softmax” function features (shown in fig3) look like part detectors. Each digit
over past values of the code unit. By unrolling the recursive can be expressed as a linear combination of a small number
expression of the denominator in ef),(we can expressit  of these 50 parts, placed at one of 81 locations in the im-
as a sum of past values ef* (™) with exponentially de-  age frame. Unlike with the non-invariant method described
caying weights. This adaptive logistic can output a large in [19], no two filters are shifted versions of each other.



5. Learning Feature Hierarchies input image 64 33433 feature maps 512 55

feature maps

140x140

Once trained, the filters produced by the above algorithm _M-» i
can be applied to large images (of size< ¢). The max n
pooling operation is then performed ovelrx M neighbor- i _m" }
hoods. Assuming that these pooling windows do not over- | _M" A 3
lap, the output is a set of feature maps of giz&/ x ¢/M. Bl ® :
This output is invariant to shifts within tha/ x 1 max | 1oa HEH| : °
pooling windows. We can extract local patches from these : —;\ 3 : — ow_
locally-invariant multidimensional feature maps and feed : ° : : °
them to another instance of the same unsupervised learn- L © _m-» ©
ing algorithm. This second level in the feature hierarchy W
will generate representations that are even more shift and 1 max-podling ‘!" max-poaling —
distortion invariant because a max-pooling oxex N win- and squashins_m_, and squashing|  ;
dows at the second level corresponds to an invariance over i !
an NM x NM window in the input space. The second- convolution —!-' comvention
level features will combine several first-level feature map first level second level
into each output feature map according to a predefined con- feature extraction feature extraction

nectivity table. The invariant representations producgd b

the second level will contain more complex features than rigure 4. Example of the computational steps involved in the

the first level. generation of two 55 shift-invariant feature maps from a pre-
Each level is trained in sequence, starting from the bot- processed image in the Caltech101 dataset. Filters andrdeat

tom. This layer-by-layer training is similar to the one pro- maps are those actually produced by our algorithm.

posed by Hinton et al9] for training deep belief nets. Their

motivation was to improve the performance of deep multi-

layer network trained in supervised mode by pre-training  The layer-by-layer unsupervised training is conducted as

each layer unsupervised. follows. First, we learn the filters in the convolutional éay
Our experiments also suggest that training the bottomwith the sparsifying encoder-decoder model described in

layers unsupervised significantly improves the perfornrsanc sec.3 trained on patches randomly extracted from training

of the multi-layer classifier when few labeled examples are images. Once training is complete, the encoder and decoder

available. Unsupervised training can make use of largefilters are frozen, and the sparsifying logistic is replalogd

amount of unlabeled data and help the system extract in-a tanh sigmoid function with a trainable bias and a gain

formative features that can be more easily classified. Train coefficient. The bias and the gain are trained with a few

ing the parameters of a deep network with supervised gradi-iterations of back-propagation through the encoder-decod

ent descent starting from random initial values by does notsystem. The rationale for relaxing the sparsity constraint

work well with small training datasets because the systemis to produce representation with a richer information con-

tends to overfit. tent. While the the sparsifying logistic drives the system
to produce good filters, the quasi-binary codes it produces
6. Experiments does not carry enough information for classification pur-

pose. This substitution is similar to the one advocated]in [
We used the proposed algorithm to learn two-level hier- in which the stochastic binary units used during the unsu-
archies of local features from two different datasets of im- pervised training phase are replaced by continuous sigmoid
ages: the MNIST set of handwritten digits and the Caltech- units after the filters are learned. After this second unsu-
101 set of object categorie§[ In order to test the represen-  pervised training, the encoder filters are placed in theseorr
tational power of the second-level features, we used them agsponding feed-forward convolution/pooling layer pairdan
input to two classifiers: a two-layer fully connected neural are followed by theanh sigmoid with the trained bias and
network, and a Gaussian-kernel SVM. In both cases, thegain (see fig4). Training images are run through this level
feature extractor after training is composed of two stackedto generate patches for the next level in the hierarchy. We
modules, each with a convolutional layer followed by a emphasize that in the second level feature extractor each

max-pooling layer. It would be possible to stack as many feature combines multiple feature maps from the previous
such modules as needed in order to get higher-level repevel.

resentations. Figd shows the steps involved in the com-

putation of two output feature maps from an image taken 6.1. MNIST

from the Caltech101 dataset. The filters shown were among

those learned, and the feature maps were computed by feed- We constructed a deep network and trained it on subsets
forward propagation of the image through the feature ex- of various sizes from the MNIST dataset, with three differ-
tractor. ent learning procedures. In all cases the feature extractio



FEMIEErEE IEUANMTEERF PG AR E Thefirst training procedure trains the four bottom lay-
ALANINEEFANIMPeaL AL A=TA0148  ers of the network unsupervised over the whole MNIST
dataset, following the method presented in the previous sec
Figure 5. Fifty 77 sparse shift-invariant features learned by the tions. In particular the first level module was learned us-
unsupervised_learning algorithm_ on the MNIST dataset. &fies ing 100,000 &8 patches extracted from the whole train-
ters are used in the first convolutional layer of the featuteaetor. ing dataset (see fig), while the second level module was
trained on 100,000 506x6 patches produced by the first
Classlcaton eor on e MNIST dtaser level extractor. The second-level features are receptive
£ [ iy ] fields of size 1818 when backprojected on the input. In
e both cases, these are the smallest patches that can be re-
\\: < constructed from the convolutional and max-pooling lay-
= ers. Nothing prevents us from using larger patches if so
\ desired. The top two layers are then trained supervised with
features extracted from the labeled training subset.sElce
ond training procedure initializes the whole network ran-
SRR we e e domly, and trains supervised the parameters in all layers us
suectisbeleduann se ing the labeled samples in the subset. Tied training
procedure randomly initializes the parameters in both lev-

% Classification error
B

Unsupervised training ] o Random_bo"om_la_yers, h i N
e | o | et | S o els of the feature extractor, and only trains (in supervised
lop layers mode) the top two layers on the samples in the current la-

60,000 0.64 0.62 0.89 .

20,000 065 064 094 beled subset, using the features generated by the feature ex

20,000 0.76 0.80 1.01 - -

10,000 085 084 109 tractorwith random filters

S50 Sos e ] For the supervised portion of the training, we used la-

00 3z KR kR beled subsets of various sizes, from 300 up to 60,000.

Learning was stopped after 50 iterations for datasets ef siz
Figure 6. Classification error on the MNIST test set (%) when bigger than 40,000, 100 iterations for datasets of sizeQI0,0
training on various size subsets of the labeled training ¥éth to 40,000, and 150 iterations for datasets of size less than
large labeled sets, the error rate is the same whether thenbot 5 ,000.
layers are learned unsupervised or supervisec.j..The netwmitrk The results are presented in fig. For larger datasets
random f!lyers_ at bottom'levels performs sur_p_rlsmgly wahder (> 10,000 samples) there is no difference between training
1% classification error with 40K anq 60K training samples)thw the bottom layer unsupervised or supervised. However for
Ema"er labeled sets, the error rate is lower when the bolgats o,y 0 - jatasets, networks with bottom layers trainedunsu
ave been trained unsupervised, while pure supervisecihgpof . - .
the whole network is plagued by over-parameterization: dvaw perylsed perfor_m conS|sten_tIy better than networks tiine
despite the large size of the network the effect of ovenmfittis entirely supervised. Keeping the bottom layers random
surprisingly limited. yields surprisingly good results (less than 1% classificati
error on large datasets), and outperforms supervised train
ing of the whole network on very small datasets 1,000
samples). This counterintuitive result shows that it might
be better to freeze parameters at random initial values when
the paucity of labeled data makes the system widely over-
parameterized. Conversely, the good performance with ran-
dom features hints that the lower-layer weights in fully su-
pervised back-propagation do not need to change much to
provide good enough features for the top layers. This might
explain why overparameterization does not lead to a more
dramatic collapse of performance when the whole network
is trained supervised on just 30 samples per category. For
comparison, the best published testing error rate whem-trai
ing on 300 samples is 3%, and the best error rate when
training on the whole set is 0.60%¢).

is performed by the four bottom layers (two levels of con-
volution/pooling). The input is a 3434 image obtained

by evenly padding the 2828 original image with zeros.
The first layer is a convolutional layer with fifty<77 filters,
which produces 50 feature maps of sizex28. The second
layer performs a max-pooling ovex2 neighborhoods and
outputs 50 feature maps of sizexX184 (hence the unsuper-
vised training is performed dhx 8 input patches witl2 x 2
pooling). The third layer is a convolutional layer with 1(P8
filters of size 5¢5, that connect the subsets of the 50 layer-
two feature maps to the 128 layer-three maps of sizellD
Each layer-three feature map is connected to 10 layer-two
feature maps according to a fixed, randomized connectivity
table. The fourth layer performs a max-pooling over22

neighborhoods and outputs 128 feature maps of size. 5 6.2. Caltech 101

The layer-four representation ha88 x 5 x 5 = 3,200 The Caltech 101 dataset has images of 101 different ob-
components that are fed to a two-layer neural net with 200ject categories, plus a background category. It has various
hidden units, and 10 input units (one per class). There is anumbers of samples per category (from 31 up to 800), with
total of aboutl0° trainable parameters in this network. a total of 9,144 samples of size rougld§0 x 300 pixels.



LE‘" .r. ‘I ; ]_‘T‘ H-- 30 sa_mples per category (see iy To test how a bgseline

: B —— = . classifier fares on these 518 x5 features, we applied/a
Al CSNFRTN Pl B0 .-: nearest neighbatlassifier which yielded about 20% overall
[Tl TE I N ™  average recognition rate far= 5.
th=='-ﬂI:hﬁ Ig:j“‘ Next, we trained an SVM with Gaussian kernels in the

one-versus-others fashion for multi-class classificatidme

1“ : rF | . ! .! two parameters of the SVM’s, the Gaussian kernel width
E o g ! i- = ~~1 and the softnesg’, are tuned with cross validation,
o with 10 out of 30 samples per category used as the vali-

dation set. The parameters with the best validation perfor-
Figure 7: Caltech_lOl feature extraction._ Top Panel: th_eoﬁaarq:- mance;y = 5.6- 107, C = 2.1-103, were used to train the
lutional filters qf sized x 9 learned by the flrst'level of the invariant SVM'’s. More than 90% of the training samples are retained
e o e e o 25 SUpport vectors of the trained SVM'. Thi s an indica
feature gxtraction tion of the complexity of the classification task due to the

' small number of training samples and the large number of

categories. We report the average result over 8 independent
The common experiment protocol adopted in the literature runs, in each of which 30 images of each category were ran-
is to take 30 images from each category for training, use thedomly selected for training and the rest were used for test-
rest for testing, and measure the recognition rate for eaching. The average recognition rate over all 102 categories is
class, and report the average. 54%(+ 1%).

This dataset is particularly challenging for learning- For comparison, we trained an essentially identical ar-
based systems, because the number of training sample peghitecture in supervised mode using back-propagation (ex-
category is exceedingly small. An end-to-end supervisedcept the penultimate layer was a traditional dot-produdt an
classifier such as a convolutional network would need asigmoid layer with 200 units instead of a layer of Gaus-
much larger number of training samples per category, lestsian kernels). Supervised training from a random initial
over-fitting would occur. In the following experiment, we condition over the whole net achieves 100% accuracy on
demonstrate that extracting features with the proposed unthe training dataset (30 samples per category), but only
supervised method leads to considerably higher accuracy20% average recognition rate on the test set. This is only
than pure supervised training. marginally better than the simplest baseline systems]|

Before extracting features, the input images are prepro-and considerably worse than the above result.
cessed. They are converted to gray-scale, resized so éhatth  In our experiment, the categories that have the lowest
longer edge is 140 pixels while maintaining the aspect yatio recognition rates are the background class and some of the
high-pass filtered to remove the global lighting variations animal categories (wild cat, cougar, beaver, crocodita); ¢
and evenly zero-padded to a 24040 image frame. sistent with the results reported ibj] (their experiment did

The feature extractor has the following architecture. In notinclude the background class).
the first level feature extractor (layer 1 and 2) there are  Our performance is similar to that of similar multi-stage
64 filters of size %9 that output 64 feature maps of size Hubel-Wiesel type architectures composed of alternated
132x132. The next max-pooling layer takes non overlap- layers of filters and max pooling layers. Serre et al] [
ping 4x4 windows and outputs 64 feature maps of size achieved an average accuracy of 42%, while Mutch and
33%x33. Unsupervised training was performed on 100,000 Lowe [17] improved it to 56%. Our system is smaller than
patches randomly sampled from the subset of the Caltechthose models, and does not include feature pooling over
256 datasetd] that does not overlap with the Caltech 101 scale. It would be reasonable to expect an improvement in
dataset (the C-101 categories were removed). The first levebccuracy if pooling over scale were used. More importantly,
was trained on such patches of sizex12. The second our model has several advantages. First, our model uses no
level of feature extraction (layer 3 and 4) has a convolu- prior knowledge about the specific dataset. Because the fea-
tional layer which outputs 512 feature maps and has 2048tures are learned, it applies equally well to natural images
filters. Each feature map in layer 3 combines 4 of the 64 and to digit images (and possibly other types). This is quite
layer-2 feature maps. These 4 feature maps are picked aunlike the systems in?[), 17] which use fixed Gabor filters
random. Layer 4 is a max-pooling layer withx5 win- at the first layer. Second, using trainable filters at the sec-
dows. The output of layer 4 has 512 feature maps of sizeond layer allows us to get away with only 512 feature maps.
5x5. This second level was trained unsupervised on 20,000This is to be compared to Serre et al's 15,000 and Mutch et
samples of siz&4 x 13 x 13 produced by the first level al's 1,500.
feature extractor. Example of learned filters are shown in  For reference, the best reported performance of 66.2%
fig. 7. on this dataset was reported by Zhang et &il],[ who

After the feature extractor is trained, it is used to extract used a geometric blur local descriptor on interest points,
features on a randomly picked Caltech-101 training set with and matching distance for a combined nearest neighbor
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