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ABSTRACT

Active learning methods seek to reduce the number of la-
beled examples needed to train an effective classifier, and
have natural appeal in spam filtering applications where
trustworthy labels for messages may be costly to acquire.
Past investigations of active learning in spam filtering have
focused on the pool-based scenario, where there is assumed
to be a large, unlabeled data set and the goal is to iter-
atively identify the best subset of examples for which to
request labels. However, even with optimizations this is a
costly approach. We investigate an online active learning
scenario where the filter is exposed to a stream of messages
which must be classified one at a time. The filter may only
request a label for a given message immediately after it has
been classified. The goal is to achieve strong online classifi-
cation performance with few label requests. This is a novel
scenario for low-cost active spam filtering, fitting for applica-
tion in large-scale systems. We draw from the label efficient
machine learning literature to investigate several approaches
to selective sampling in this scenario using linear classifiers.
We show that online active learning can dramatically re-
duce labeling and training costs with negligible additional
overhead while maintaining high levels of classification per-
formance.

1. INTRODUCTION

Statistical spam filters require labeled examples of spam
(unwanted or harmful electronic messages) and ham (legit-
imate electronic messages). Labeled data is used for train-
ing machine learning classifiers to distinguish between the
two classes. This methodology has been largely successful
when given large, fully labeled data sets [5] [4]. However,
in practice it may be costly to acquire labels for training
data. Indeed, for real-world spam filters, it is unreasonable
to assume that a user will label every message: such a re-
quirement defeats the purpose of the filter.

Active learning methods have been developed in the ma-
chine learning community to reduce labeling cost by iden-
tifying informative examples for which to request labels. It
has been shown in practice that only a small portion of a
large unlabeled data set may need to be labeled to train an
active learner that achieves strong classification performance
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[13] [7] [17] [22] [2]. Thus, active learning is an appealing
tool for real-world spam filtering.

The pool-based approach to active learning has previously
been applied to spam filtering, with good results [14] [21]
[4]. Similar to prior results in text classification [13], it has
been shown that only a small subset of a larger unlabeled
email data set needs to be labeled to achieve strong perfor-
mance. Several active learning methods are appropriate for
this task, including uncertainty sampling [13], version space
reduction [22], and query by committee [7]. However, the
iterative pool-based approach is computationally expensive,
often requiring many passes through the entire unlabeled
data set. Segal et al. introduced an efficient approximation
that reduced this cost, but still required at least one full
pass through an entire unlabeled data set before any labels
could be requested [21].

We depart from the pool-based approach and investigate
the novel use of online active learning methods for spam fil-
tering. In this online case, the filter is exposed to a stream of
messages and is asked to classify them one by one. At each
point in time, the active filter may choose to request a label
for the given example. The goal here is to create a strong
classifier while requesting as few labels as possible. This ap-
proach has several advantages over the pool-based method-
ology. First, it reflects the actual application scenario of
real-world spam filters, which are applied in online (and of-
ten real-time) settings. A user may be much more willing
to label a new incoming message than one from the past,
especially if label requests are made relatively infrequently.
Second, online active learning enables solutions with only
O(1) additional computation and storage costs. The online
active learning scenario involves no repeated passes over un-
labeled data, which is the primary source of computational
cost in pool-based active learning, and does not require stor-
age of a large pool of unlabeled examples.

In the remainder of this paper, we review related work
in both pool-based and online active learning. We then de-
scribe several online active learning active strategies for lin-
ear classifiers. We test these methods on spam filtering tasks
using three linear classifiers: classical Perceptron, Percep-
tron with Margins, and linear Online Support Vector Ma-
chines. We find strong results with these methods, greatly
reducing the number of labels needed to achieve strong clas-
sification performance on two large benchmark data sets.
These results exceed the performance of uniform subsam-
pling on both data sets, and also out-perform the pool-based
active learning methods from the 2006 TREC spam filtering



competition by at least an order of magnitude. We conclude
with a discussion on the implication of these results for spam
filtering and user interface.

2. RELATED WORK

Active learning is a well-studied branch of machine learn-
ing. Although pool-based active learning has received more
attention, there has also been significant work in online ac-
tive learning (sometimes referred to as label efficient learn-
ing). In this section, we explore connections between this
work and the goal of spam filtering with online active learn-
ing.

2.1 Pool-based Active Learning

As discussed in the introduction, there have been a variety
of pool-based active learning methods proposed in the liter-
ature. There have been several examinations of pool-based
active learning for spam filtering [21], including a task in
the 2006 TREC spam filtering competition [4]. Pool-based
active learning assumes that the learner has access to a pool
of n unlabeled examples, and is able to request labels for up
to m << n examples on each labeling round.

There are several methods for selecting these m exam-
ples. Uncertainty sampling [13] requests the m examples
for which the current hypothesis has the least confidence in
classification. Another method is to request labels for those
examples that will most reduce the size of the version space
[22]. The Query by Committee algorithm is another ap-
proach to version space reduction, that relies on predictions
from hypotheses sampled from the version space [7]. It is
also possible to request labels for those examples which are
estimated to most greatly reduce training error [17].

There are two issues with these pool-based active learn-
ers, as applied to spam filtering. First is cost. In an iter-
ative pool-based scheme, each of the n examples must be
re-evaluated on each iteration. Some methods, such as ver-
sion space reduction, Query by Committee, and estimation
of error rate reduction are expensive can incur expensive
evaluation cost. But even with inexpensive evaluation meth-
ods such as uncertainty sampling, or the simple method of
version space reduction [22], the cost of active learning is
still O(ni) for a pool of n examples over ¢ iterations. For
large email systems, this cost may be prohibitive. Segal et
al. have proposed a method of reducing this cost for spam
filtering with approximation to uncertainty sampling [21],
but even here the entire pool of unlabeled examples must
be examined at least once before labels may be requested.
Thus, the main overhead in pool-based active learning is in
choosing examples for which to request label.

The second issue with pool-based active learning is that
in practical settings, spam filtering is most naturally viewed
as an online task. Emails enter a system in a stream, not a
pool. Online active learning enables clean user-interface for
requesting labels from actual users in real time.

Pool-based active learning does have one potential advan-
tage over online active learning. Because pool-based active
learning considers an entire data set at once, it is possi-
ble that pool-based active learning may identify the optimal
subset of training examples. Online active learning neces-
sarily uses a greedy strategy that may not select the opti-
mal subset. However, in practice, many pool-based active
learning methods also employ a version of greedy selection,
as constructing the optimal training set can be extremely
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Figure 1: Online Active Learning.

expensive. Thus, the online approach may not necessarily
suffer in this regard.

2.2 Online Active Learning

To the best of our knowledge, this is paper is the first
examination of online active learning methods to spam fil-
tering. The first analysis of online active learning in machine
learning was performed by Helmbold and Panizza [9], under
the heading of Label Efficient Learning. This work examined
the tradeoffs between the cost of label requests and the cost
of errors in an online learning setting. There have since been
several proposals for Label Efficient learning methods for lin-
ear classifiers [3] [6], but to our knowledge the b-Sampling
approach is the only approach that has been analyzed that
does not require either the number of total examples in the
data stream or the maximum number of label requests to
be specified in advance. Because practical spam filtering is
performed in an essentially unbounded online setting, it is
important not to have such restrictions.

We should also point out that Query by Committee [7] is
essentially an online active learning algorithm. We do not
examine it in this paper because the process of sampling hy-
potheses from the version space is too expensive for practical
spam filtering.

3. ONLINEACTIVELEARNING METHODS

The basic online active learning framework is shown in
Figure 2.1. Messages come to the filter in a stream, and the
filter must classify them one by one. At each point, the filter
has the option of requesting a label for the given message,
and the goal is for the filter to achieve strong classification
performance with as few label requests as possible.

The issue considered in this section is: given an example
and a classification score, how should the filter decide to
request a label? We examine four schemes for making this
decision. The first is a randomized label efficient method
first proposed for linear classifiers such as classical Percep-
tron [2]. The second is similar, but uses a logistic sampling
rule. The third borrows from the idea of uncertainty sam-
pling, and requests labels lying within a fixed distance from
the classification hyperplane. The fourth method, uniform
sub-sampling, is a non-active learning method used for base-
line comparison.
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Figure 2: b-Sampling Probabilities

The notation in this section assumes that the online ac-
tive filter is built using a linear classifier, several of which
are reviewed in Section 4. Individual emails are treated as
examples, in the machine learning terminology. Assume that
examples are drawn from X C R", and that each example
x; € X has an associated label y; drawn from {—1, 1}, rep-
resenting ham and spam, respectively. Assume that L is a
linear classifier with weight vector w, that a value p; is de-
fined for each x; by p; =< w, x; >, and the prediction by L
for example x; is given by sign(p;).

3.1 Label Efficient »-Sampling

Cesa-Bianci et al. introduced a label efficient method of
selective sampling for linear classifiers such as classical Per-
ceptron and Winnow, and gave theoretical mistake bounds
and expected sampling rates [2]. We refer to this method as
b-sampling, and describe it here.

The b sampling rule [2] is: given a sampling parameter
b > 0, request a label for example x; with probability

b

b+ [pil

As |p;| approaches zero, the probability of a label request for
x; approaches 1. This makes intuitive sense: the closer an
example is to the hyperplane, the less confidence we have in
L’s prediction. There is always some non-zero probability
of requesting a label for examples far from the hyperplane
to ensure that the hypothesis is performing well across the
entire data space.

The parameter b defines a function relating the sampling
probability P; to the classification confidence |p;|. To help
illustrate the effects of varying b, we have mapped P; against
|pi| for several values of b as shown in Figure 2. Note that
when |p;| = 0, then P; = 1 for all values of b > 0. That
is, a label is always requested when the hypothesis has zero
confidence.

3.2 Logistic Margin Sampling

The b-Sampling method of online active learning used one
particular method of mapping |p| confidence values to P
sampling probabilities, in part because this method allowed
clean theoretical analysis. For comparison, we propose and
test another natural mapping from |p| to P based on a lo-
gistic model of confidence probabilities (without theoretical
analysis) that we call Logistic Margin Sampling.
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Figure 3: Logistic Margin Sampling Probabilities

For an example x;, let probability ¢; represent the prob-
ability that the predicted label given by sign(p;) matches
the true label y;. (As before, p; is the signed distance of x;
to the classification hyperplane.) Thus, ¢; is the confidence
that our label is correct.

In this Logistic Margin approach, we model the confidence
value ¢; using a logistic function:

1
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This approximation is reasonable given the work of Platt
[15], who showed that a similar sigmoid function is a good
model for confidence values for linear classifiers.

Following the intuition behind uncertainty sampling, we
request a label for x; with probability P; = 1 — ¢;. Substi-
tuting and simplifying gives the Logistic Margin sampling
probability:

P, = e I7il

Like b-Sampling, Logistic Margin sampling gives the high-
est sampling probability to those examples lying closest to
the classification hyperplane. Those examples x; with p; = 0
are always sampled, and every example has a non-zero sam-
pling probability. The difference is in the shape of the dis-
tribution, shown in Figure 3 for different values of ~.

3.3 Fixed Margin Sampling

The previous two methods of online active learning are
probabilistic, mapping classification confidence values to sam-
pling probabilities. For comparison, we also investigate a
deterministic variant that we call fixed margin sampling.
Fixed margin sampling is a sampling heuristic that can re-
duce the total number of label requests needed for a given
performance level, but offers no theoretical guarantees.

In fixed margin sampling, a confidence threshold c is set as
a parameter. The sampling rule is straightforward: request
a label for an example x; when (and only when) |p;| < c.
Fixed margin sampling is thus visualized as a step function.
Unlike the two prior methods, fixed margin sampling does
not assign a non-zero sampling probability to all examples.
Examples x; with |p1| > ¢ will never have their labels re-
quested. Thus, the theoretical guarantees of b-Sampling do
not apply to fixed margin sampling: it is possible that a bad
initial hypothesis will continually make mistakes with high
confidence. A learner with this hypothesis, “never in doubt,



but never correct,” will not receive any label information
and thus will never update.

However, in practice, we have found that fixed margin
sampling can be effective for spam filtering. This is because
the online linear classifiers tend to make low-confidence mis-
takes before they make high-confidence mistakes, due to the
incremental nature of online updates for the linear classifiers
we examined. Thus, they avoid this theoretical problem in
actual tests. Furthermore, because fixed margin sampling
does not request labels for examples the learner is confident
for, this approach may require fewer labels in the long run.
This is especially true when the learner is able to achieve a
strong hypothesis, such as is the case in spam filtering where
filters can achieve extremely high classification performance.

3.4 Baseline: Uniform Subsampling

For completeness, we also perform tests with uniform, ran-
dom subsampling. This is not an active learning method,
but is presented here for baseline comparison. With this
method, a fixed probability value ¢ is set as a parameter,
and a label is requested for each example with probability
q. Using uniform subsampling as a baseline comparison is
common practice in active learning research, including ac-
tive learning for spam filtering [4]. This allows us to exam-
ine the difference between a learner trained on n examples
drawn at random versus a learner trained on n examples
selected by an active learning method.

4. LINEAR CLASSIFIERS

Each of the online active learning methods described in
the previous section assumes only that the classifier pro-
vides a distance |p;| showing how far an example x; is from
the classification hyperplane. Thus, these methods can be
used with any linear classifier, so long as the classifier’s hy-
pothesis can be expressed as a weight vector w € R" for
an n-dimensional feature space. In this paper, we exam-
ine three online linear classifiers: classical Perceptron [16],
Perceptron with Margins [12] [8], and linear Online SVMs.
All of these methods will share the same classification rule:
the label of an unseen example x; is predicted with sign(p;),
where p; =< w, x; >. The differences between the methods
lie in how they construct the hypothesis w.

4.1 Classical Perceptron

Classical Perceptron is an online linear classifier that has
been part of machine learning literature since the 1960’s [16],
and has received extensive theoretical analysis. The online
training method for classical Perceptron is straight forward:

e Accept learning rate n as a parameter.
Initialize w < 0.

e For each new unseen example x;, compute p; — <
w,x; > and predict y; as sign(p;). If y; # s, update:
W «— W + YiNX;.

With normalized, noiseless data, linearly separable with
margin -y, classical Perceptron has been shown to converge
to a correct hypothesis with at most 1/7? mistakes. When
data is non-linearly separable, perhaps because of noise, con-
vergence is not guaranteed and performance may suffer. On-
line training for classical Perceptron is fast, requiring only
O(m) updates, where m is the number of mistakes made in
training.

4.2 Perceptron with Margins

Perceptron with Margins is a variant of the classical al-
gorithm that attempts to maintain an approximate margin
between the data classes [12] [8], and has been shown to give
good tolerance to noise in practice [11], and has given strong
previous results on spam filtering [20]. The online training
method for Perceptron with Margins is as follows.

e Accept parameters: margin m, learning rate 7.
Initialize w < 0.

e For each new unseen example x;, compute p; — <
w,x; > and predict y; as sign(p;). If y;p; < m, update:
W — W + Y;iNX;.

Perceptron with Margins requires more online training up-
dates than classical Perceptron, needing at most 8/’y2 up-
dates for separable data with margin ~ [1]. The benefit of
Perceptron with Margins is that it tends to give improved
performance with noisy data, non-separable data, or data
separable with a very small margin ~ [12] [8] [11].

4.3 Linear Online SVMs

Linear Support Vector Machines (SVMs) are a current
machine learning method that give state of the art perfor-
mance on text classification. SVMs are maximum margin
classifiers, finding a separating hyperplane that maximizes
the distance between two data classes. See [18] for a com-
plete discussion.

In the soft-margin case (allowing for noise), the hypoth-
esis w found by SVM training is the one that solves the
following quadratic programming problem. Given m train-
ing examples in n-dimensional feature space, and a set value
of tradeoff parameter C' > 0, find the hypothesis vector w
and slack vector £ to minimize:

r(w,€) = SIWlF +C &
i=1

subject to the constraints [18] that & > 0 and y;p; > 1 —&;
for i = {1,...,m}.

A naive conversion of this batch-mode Linear SVM to an
online learning method is straightforward [19], if expensive.
This is accomplished by re-training on the entire set of seen
data each time an example is classified poorly: that is, with
yip; < 1. For iterative solvers such as SMO, this process
can be made less expensive by using the old hypothesis as
the starting point for re-training. These linear Online SVMs
have been shown to give excellent performance on spam fil-
tering [19], with appropriate setting of the C' parameter.

The primary drawback to SVMs is that they are compu-
tationally expensive, requiring training time that is roughly
quadratic in the size of the data set.! However, it has been
shown that online updates for linear SVMs in spam filter-
ing are relatively inexpensive, because the hypothesis tends
to be relatively stable [19]. Furthermore, online training
cost can be greatly reduced by optimizing over only the ¢
most recent examples while maintaining strong classification
performance, and relaxing the update and convergence re-
quirements (See [19] for details). We use this approach in
this paper.

'Note that Joachims has proposed a linear solution for linear
SVMs [10], which will be investigated for spam filtering in
future work.



5. EXPERIMENTS

In this section, we report results from experiments testing
the effectiveness of the online active learning methods from
Section 2 with the learning methods described in Section 3
on spam filtering. These results show strong support for the
use of online active learning in spam filtering.

5.1 Data Sets

We use two large, publicly available benchmark data sets
first developed for the TREC spam filtering competitions:
trec05p-1 containing 92,189 total messages [5] and trec06p
containing 37,822 total messages [4]. These data sets each
have a canonical ordering for online classification, which we
employ here for repeatability. Initial testing and parameter
tuning was performed on a separate tuning data set, the
publicly available spamassassin_corpus.

5.2 Feature Space

For all of our tests, we use a simple binary 4-gram fea-
ture mapping drawn from the first 3,000 characters of each
message. Formally, the first 3,000 characters of each mes-
sage (including all headers, content, and any attachments) is
treated as a single string s; with label y; € {—1,1}. Assume
that s; consists of characters from alphabet X, and let ex-

amples be represented as feature vectors in space {0, 1}‘2‘47
with a unique feature for each possible string of 4 contiguous
characters, referred to as a 4-gram. Map s; to x; by assign-
ing a 1 for each contiguous 4-gram feature appearing in s;,
and a 0 for all other features. Finally, normalize x; by its
Euclidean norm. We choose this feature space because it is
simple, language independent, and has given strong results
on spam classification in previous work [19].

5.3 Classification Performance

We tested each of the active learning methods with each
of the base machine learning methods on both trec05p-1
and trec06p. We varied the parameter values of the active
learning methods to assess performance with different total
numbers of label requests. For b-Sampling, b was varied be-
tween 0.001 and 1, for Logistic Margin sampling v was varied
between 1 and 16, for Fixed Margin sampling the value m
was varied from .001 to 2.4, and for uniform subsampling p
was varied from .001 to .512. These parameter values were
chosen to keep the total number of label requests within the
range of a minimum of 0 to a maximum of roughly 30,000
requested labels. Probabilistic tests were repeated 10 times
each, with mean results reported.

The results are given in Figures 4-9, using the standard
(I-ROCA)% measure [5] as the performance measure. Each
graph shows the (1-ROCA)% score (on the vertical axis)
achieved over the entire online test by an active learner re-
questing a given number of labels (on the horizontal axis)
during that test.

These results show a clear win for online active learning
methods, compared to random subsampling. In all cases, the
online active learning methods dominated random subsam-
pling in the full range of label requests tested, and achieved
equivalent performance levels using as little as 10% of the
labels needed by random subsampling to achieve the same
performance level. Note also that although the different
learning methods achieve different performance levels, with
classical Perceptron being the weakest of the methods and
Online SVMs being the strongest, the online active learning
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Figure 4: Classical Perceptron on trecO5p-1. Re-
sults reported as (1-ROCA)%, by number of labels
requested. Score using all labels is 0.071.
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Figure 5: Perceptron with Margins on trec05p-1.
Results reported as (1-ROCA)%, by number of la-
bels requested. Score using all labels is 0.021.
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Figure 7: Classical Perceptron, trec06p Results re-
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Figure 8: Perceptron with Margins on trecO6p. Re-
sults are reported as (1-ROCA)% by number of la-
bels requested. Score using all labels is 0.037.
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Figure 9: Online SVM on trecO6p. Results re-
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quested. Score using all labels is 0.025.
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Figure 10: Perceptron with Margins, sampling rate
over time, trecO5p-1

methods give the same improvement over uniform random
subsampling in all cases.

There are interesting comparisons among the online active
learning methods, as well. Both Fixed Margin and Logistic
Margin sampling tended to out-perform b-Sampling, often
requiring a fraction of the labels needed by b-Sampling to
achieve equivalent performance levels. This is most often
true when the total number of labels requested is less than
10,000. With higher numbers of label requests, the perfor-
mance of the different methods tends to converge. Note that
the Fixed Margin sampling, which offers no theoretical guar-
antees, experiences some volatility between 1000 and 2000
label requests for the trec05p-1 tests with Perceptron with
Margins.

Finally, we find that the results reported here with on-
line active learning methods for the trec06p data set are a
dramatic improvement over the results reported for pool-
based active learning methods tested in the 2006 TREC
spam filtering competition [4]. For example, the best pool-
based active learning method achieved a (1-ROCA)% score
of roughly 0.3 with 10,000 label requests. The best online
active learning methods achieved scores between 5 and 10
times better than this with the same number of label re-
quests. (To our knowledge, pool-based active learning tests
for the trecO5p-1 data set were not performed as part of
this competition.)

Note that this is not strictly an apples-to-apples compari-
son: the 2006 TREC competition divided the trec06p data
set into a pool of unlabeled examples from which examples
selected (90% of the original data set), and a separate set of
examples for testing (10% of the original data). However,
it is still fair to compare the 2006 TREC results with our
online active learning results because the 2006 TREC ex-
perimental setup is actually more favorable than the online
active learning setup. In the TREC active learning experi-
ments, the active filter was allowed to fully train on the given
number of n labeled examples before testing and evaluation,
while in the online case the filter was forced to classify new
messages without the benefit of having seen all n labeled ex-
amples. The online active learning methods out-performed
the pool-based methods with the same number of label re-
quests, and did so at greatly reduced computational cost.



5.4 Online Sampling Rates

Aside from examining overall performance levels, it is use-
ful to consider how the sampling rates for the online ac-
tive learners changes over time. In Figure 10, the sampling
rate for each active learning method is plotted against the
number of examples seen, where parameter values for each
method were set to each request roughly 3,000 labels dur-
ing the entire set. (Results are shown for Perceptron with
Margins on trecO5p-1. Other results are similar.)

Over time, the number of labels requested by the active
learning methods tends to decrease, with the Logistic Mar-
gin and Fixed Margin methods requesting labels for less than
1% of the examples by the end of the trial, compared to an
overall sampling rate of 3.2% on these tests. The sampling
rate of b-Sampling decreases steadily, but less slowly over
time. Naturally, the sampling rate of uniform subsampling
remains constant.

The decrease in sampling rate over time by the active
learners is due to the fact that the quality of the hypothesis
for each learner improves with additional labeled examples.
This allows the learner to make more predictions with high
confidence over time, reducing the number of label requests.

This observation is of practical value in large-scale email
systems. Online active learning methods not only reduce the
number of labeled examples needed to make a spam filtering
system operable, but will also greatly reduce the number of
labels needed to maintain strong classifiers over time.

6. CONCLUSIONS

We have proposed an online active learning framework
for spam filtering, and have explored several reasonable ap-
proaches to determining when to request labels for new ex-
amples. We believe that online active learning is the most
appropriate form of active learning for spam filtering. These
methods give improved results over uniform subsampling
and over prior pool-based active learning methods, reduc-
ing the number labels needed to achieve high performance
with negligible computational cost. Furthermore, the on-
line active learning approach is well suited to this domain,
because spam filtering is an inherently online task.

Not only do online active learning methods reduce the
number of email labels needed for strong performance, they
also reduce computational cost of training. Training up-
dates in the online active learning framework are only able
to occur when a label request has been made. Because these
methods require only a fraction of the total possible labels,
training cost is necessarily reduced. This finding is of key
importance for large email systems filtering millions or bil-
lions of messages each day.

These results have implications not only for the statistical
side of spam filtering, but for user interface as well. Because
online active learners require only few label requests, and
the rate of label requests decreases over time, it is possible
to envision an email system that asks a user to label per-
haps one or two messages per day. Such a system would
have strong filtering performance while requiring very lit-
tle feedback from the user. Given the low cost and high
performance of this approach, we recommend online active
learning methods as a new, general strategy for real-world
spam filtering.
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