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Abstract

We present an approach to transductive
learning that employs semi-supervised clus-
tering of all available data (both labeled
and unlabeled) to produce a data-dependent
SVM kernel. In the general case where the
domain includes irrelevant or redundant at-
tributes, we constrain the clustering to occur
on the manifold prescribed by the data (both
labeled and unlabeled). Empirical results
show that the approach performs comparably
to more traditional kernels while providing
significant reduction in the number of sup-
port vectors used. Further, the kernel con-
struction technique inherently possesses some
of the benefits that would normally be pro-
vided by preprocessing with a dimensionality
reduction algorithm. However, preprocess-
ing still provides some additional benefit to
the data-dependent kernel, including reduc-
tion in classification error due to improved
cluster quality and robustness with respect
to the SVM slack variable.

1. Introduction

In many learning scenarios, it is common for data ac-
quisition to be inexpensive compared to data label-
ing. In such instances, transductive or semi-supervised
learning approaches are often useful. These involve not
only the traditional machine learning task of model
selection but also the question of how to incorporate
unlabeled data into the learning process. We con-
sider the application of SVM classifiers to such sit-
uations and address the problem of kernel selection,
presenting a method for explicit, data-driven kernel
construction that incorporates all available data, both
labeled and unlabeled. Because we are working in a
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transductive setting, it makes sense to utilize the ad-
ditional information provided by the unlabeled data,
something many traditional techniques cannot (nat-
urally) do. Our approach creates a data-dependent
distance metric using all available data and then uses
that metric in classifying the unlabeled portion of the
data. We proceed by initially clustering the data in
a semi-supervised manner, and then use the resulting
pairwise distances to generate an affinity matrix for
use as the kernel of an SVM. We also investigate the
effect of preprocessing the data with a nonlinear man-
ifold learner for dimensionality reduction, effectively
constraining our clustering to the manifold.

In what follows, we formally describe our approach
to constructing the data-dependent kernel and present
empirical results on several real-world data sets that
highlight the characteristic benefits of the technique.
Before doing so, however, we briefly mention related
work in three significant areas: semi-supervised clus-
tering, kernel selection and manifold learning.

1.1. Semi-supervised Clustering

Semi-supervised clustering, a form of transductive in-
ference, is an easier problem than the standard ap-
proach of inductive transfer followed by deductive clas-
sification. The presence of unlabeled data allows for
better estimation of the data’s true distribution which
can improve classification accuracy. Vapnik (1998) has
proposed a framework to establish upper bounds on
the empirical error of on a set of unlabeled data, Du,
given the empirical error on a set of labeled data, Dl.

Given the widespread adoption of support vector ma-
chines, also based on Vapnik’s statistical learning the-
ory, it is not surprising that significant effort has gone
into combining the principles of transductive learn-
ing and SVM’s. Broadly, these approaches attempt
to combine the maximum margin principle of SVM’s
with the clustering assumption (points that lie close
together are likely to belong to the same class).

An early example of this work is the transductive
SVM (Joachims, 1999). In this approach the deci-
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sion boundary is chosen in such a way to maximize
the margin for both labeled and unlabeled data. In
other words, the transductive SVM attempts to draw
a decision boundary in areas of low data density. Re-
lated works that followed include (Joachims, 2003) and
(Szummer & Jaakkola, 2001) and more recent work
includes variations such as semi-supervised regression
(Zhou & Li, 2005).

Several approaches to combining the principles of
semi-supervised clustering and support vector ma-
chines have been proposed. Xu et. al (2005) use the
maximum margin principle to guide clustering, while
Chapelle, Weston and Schölkopf (2003) generate an
affinity matrix that leverages available unlabeled data.

We follow the example of Chapelle et. al in our ef-
forts to directly construct a SVM affinity matrix using
clustering techniques. In contrast, while their method
requires the choice of a “transfer function”, ours re-
quires choosing only two scalar parameter values; also,
while their method is based on spectral clustering, we
use a graph-based clustering more reminiscent of LLE
or Isomap with their strong non-linear advantages.

Semi-supervised clustering can be seen as a generaliza-
tion of the transductive inference problem. Labels or
pairwise constraints can be used to modify the stan-
dard clustering objective function or to learn an ap-
propriate distance metric. Basu, Bilenko and Moody
(2004) have proposed several semi-supervised clus-
tering algorithms including Seeded KMeans, HMRF-
KMeans, and Pairwise Constraints KMeans.

1.2. Kernel Selection

The selection of a kernel for kernel based learning
methods is critical to model performance and is usually
the subject of empirical analysis in which parameters
for a specific class of kernels are chosen via cross valida-
tion. There has been some work on the development of
adaptive or data-dependent kernels. Data dependent
kernels were first proposed in (Amari & Wu, 1999),
where a modified kernel takes the form

K̃(x,x′) = c(x)c(x′)K(x,x′)

where K(x,x′) is some standard kernel and c(x) is a
data dependent transforming factor. The idea is to
increase the resolution of the feature space near the
separation boundary. Similar work includes (Xiong
et al., 2004), (Heisterkamp et al., 2001) and (Peng
et al., 2002).

Another method of developing data dependent kernels,
presented in (Cristianini et al., 2001), adapts the ker-

nel matrix based on the notion of “kernel target align-
ment”. Target alignment is defined in terms of the
Frobenius inner product and measures the similarity
of a kernel matrix and the labels in feature space. The
method in (Cristianini et al., 2001) involves finding all
the eigenvectors of the kernel matrix generated by a
standard kernel function and then finding an optimal
linear combination of those eigenvectors.

1.3. Manifold Learning

Manifold learning, typically for the purpose of dimen-
sionality reduction and/or discovering the intrinsic di-
mensionality of data, is related to both clustering and
kernel-based methods as another approach to comput-
ing/discovering distance metrics. Seminal work in this
area is represented by the well-known manifold learn-
ers Isomap (Tenenbaum et al., 2000) and LLE (Roweis
& Saul, 2000), while more recent work includes exten-
sions of this technique like Spectral Learning (Kamvar
et al., 2003) and Relevant Component Analysis (Bar-
Hillel et al., 2005), as well as alternative approaches
such as Tensor Voting (Mordohai & Medioni, 2005).

2. Methodology

Given a set DL of nl labeled data points and a set
DU of nu unlabeled data points, we use a graph-based
semi-supervised clustering algorithm to learn a data-
specific distance metric, represented by a n×n matrix
of point-to-point distances for DL ∪ DU , where n =
nl + nu. This matrix is then used in constructing a
kernel matrix for an SVM.

2.1. Distance Matrix Construction

Our goal is to create the matrix MD = dij , where
1 ≤ i, j ≤ n and dij is the (data-dependent) distance
from point i to point j. We begin by clustering the
data. Given data with m classes and nl labels, we
use hierarchical agglomerative clustering with purity
thresholding to cluster the data. The purity threshold
θ allows us to leverage any labels that are available.
The purity ρ of any cluster c is calculated as

ρc =


nkc

nlc

if nlc > 0

1 if nlc = 0

where nkc is the count of the most common label in
c and nlc is the total number of labeled points in c.
Initially, the set C of clusters contains only clusters
ci consisting of a single point and having a purity of
1. Clusters are then iteratively agglomerated as fol-
lows. For each cluster ci, in C, we find it’s nearest
neighbor, cj (we use complete link clustering and the
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Euclidean metric – the distance between any two clus-
ters is defined as the Euclidean distance between their
two most distant points). If ρ(ci∪cj) ≥ θ, we remove
ci and cj from C and add the cluster (ci ∪ cj) to C.
This process is repeated until no further clusters can be
combined. Finally, any clusters that remain without
labeled points are combined with the nearest cluster
that has at least one labeled point. C now contains
some number of clusters that can each be identified
with a dominant label lc.

For each cluster c, we compute a virtual center of mass
point γc:

γc =
1
nc

∑
x in c

x

where nc is the total number of points in c (both la-
beled and unlabeled) and the summation is vector ad-
dition with the coefficient a scalar applied to each ele-
ment in the resulting vector. Now, for clusters c1 and
c2 we define the distance between their centers of mass
as

dist(γc1 , γc2) =

{
‖γc1 − γc2‖ if lc1 6= lc2

0 if lc1 = lc2

In other words, if two clusters share a common label,
the distance between their centers of mass is defined
to be 0; if they have different labels, the distance be-
tween their centers of mass is the standard Euclidean
distance. Next, a shortest path graph traversal algo-
rithm (optimized Floyd-Warshall) is used to propagate
the effect of these “wormholes” between clusters to ev-
ery pair of data points. In essence, this will create m
meta-clusters as the matrix MD is defined 1

dij = ‖xi − γci‖+ dist(γci , γcj ) + ‖xj − γcj‖ (1)

where xi is the vector representation of point i, ci is
the cluster containing point i, γci is the virtual center
of mass of ci and ‖·‖ is the Euclidean metric. In other
words, we combine all clusters with common labels by
decreasing the distance between the points included in
such clusters (via the “wormholes”).

1Actually, the distances calculated by the shortest path
algorithm cannot be so simply characterized. Eq. 1 is rep-
resentative of the effects the “wormholes” can have on the
final distance matrix; however, there are actually 5 differ-
ent scenarios that can represent the shortest path between
two points (for the 2-class case). Eq. 1 gives one of the
five cases, but in practice we compute all five cases for each
pair of points and take the minimum, with the result being
the same as running a regular Djikstra’s algorithm, just
(much) faster.

To improve separability we post-process the matrix
MD to push these meta-clusters apart by increasing
the distance between each pair of points in different
meta-clusters. The distance is increased by κ times the
greatest distance between any two data points sharing
the same label (we used κ = 2 in our experiments).
That is,

dij =

{
dij + κ max

k
max
i,j∈ck

dij if lci
6= lcj

dij if lci = lcj

The resulting distance matrix represents a feature
space where each point is grouped with similar points,
points that share the same label, and points that are
similar to points that share the same label.

2.2. Kernel Construction

The distances learned through the clustering process
represent an embedding of data into a vector space,
which can be used as the (mapped) feature space for
an SVM. If the distance matrix is used to construct a
kernel function, a support vector machine can be used
to find a decision surface in that space.

Kernel functions work by calculating dot products, and
in particular the kernel function K(xi,xj) is defined
in general as

K(xi,xj) = Φ(xi) · Φ(xj)

where Φ(x) is the transformation of x into feature
space. From the definition of the dot product as
a · b = ‖a‖‖b‖cos(θ) and the law of cosines, the kernel
function corresponding to any distance matrix can be
written as

K(xi,xj) =
−d2

ij + ‖Φ(xi)‖2 + ‖Φ(xj)‖2

2
(2)

where dij is the distance between the points Φ(xi)
and Φ(xj). We chose to define dij as the distance
found by our clustering algorithm between xi and xj ,
and ‖Φ(x)‖ as the distance found during clustering
between x and an arbitrarily chosen origin point. (Be-
cause we’re just picking an origin so we can convert
distances to dot products, any point is as good as any
other.) This choice of terms creates a kernel function
corresponding to a feature space with the distances
induced from the clustering phase. It is interesting to
note that this is not an inner-product space, since the
“wormholes” allow the distance metric to violate the
triangle inequality. As a result, the Mercer conditions
required for the performance guarantees of SVMs do
not hold for our kernel. In practice some of the most



Data-driven Kernels via Semi-Supervised Clustering on the Manifold

popular kernels (including the Guassian kernel) also
violate these conditions, but still perform well on real-
world data sets, just as our kernel does.

This new data-dependent kernel is used to train a
standard support vector machine. During the training
phase of the SVM, all necessary values of the kernel
function can be found in the kernel matrix of Eq. 2.
During execution, however, it is possible that values of
the kernel function may be needed which do not exist
in the kernel matrix. In this case, some interpolation is
necessary. During testing, all of the calls to K(xt,xs)
are made with a test point and a support vector as
parameters, respectively. Since SVMs always choose
their support vectors from the set of points available
during training, there will be a set of entries in the dis-
tance matrix corresponding to each support vector. If
there is not an entry in the distance matrix for the test
point, its value is interpolated using k-Nearest Neigh-
bor and linear weighted regression. The nearest neigh-
bors (xi1...ik

) are chosen as the points which are closest
to the test point using the same distance metric that
was used to generate the original clusters (here, the
Euclidean metric). The value of the distance function
is calculated as

dts =
∑k

i=1 dsij

∥∥xt − xij

∥∥∑k
i=1

∥∥xt − xij

∥∥ (3)

which is then used as the dij term in Eq. 2. The Φ(xt)
term in Eq. 2 is calculated in a similar manner, as a
weighted average of Φ(xij

).

3. Empirical Results

We performed extensive empirical testing of eight dif-
ferent kernels on ten different data sets measuring error
rates, the effect of cluster purity and slack on perfor-
mance, number of support vectors used, and number
of clusters used. The kernels used were a polynomial
kernel, a Gaussian kernel, a mixed poly/Gaussian ker-
nel, and a data-dependent kernel matrix. In addition,
each of the kernels was applied after preprocessing the
data with a non-linear dimensionality reduction algo-
rithm (we used Relevant Component Analysis (Bar-
Hillel et al., 2005)). Nine of the data sets (Chess, Ger-
man, Heart, Pima, Spect, Voting, WBC1, WBC2 and
WBC3 ) are taken from the UCI repository (Blake &
Merz, 1998) and the tenth (ADA) is from a recent per-
formance prediction challenge at IJCNN 2006.

For each data set and for each kernel, we obtained
support vector count and classification error on the
unlabeled portion of the data. We varied slack settings
and amounts of unlabeled data, and, in addition, for
the data-dependent kernels, the cluster purity was

varied as well. We varied the slack variable C over the
values {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000},
the cluster purity θ over the values
{0.80, 0.85, 0.90.0.95, 1.00}, and the amount of
unlabeled data as a percentage of the total data
available in 10% increments from 10% to 90%. All
results were obtained using 10-fold cross validation,
resulting in 40, 500 experiments for each of the two
data-dependent kernels and 8, 100 experiments for
each of the six traditional kernel variations, for a
grand total of 129, 600 experimental runs.

Table 1 summarizes the best classification error for all
kernels for all data sets using 90% unlabeled data. Fig-
ures 1 and 2 show representative learning curves for the
different kernels on two of the data sets. Results re-
ported are the best average error (across the 10-folds)
for any value of C and θ. Note that, as expected, ker-
nel performance is data dependent (note in particular
the learning curves for the RCA/poly kernel, which
had difficulty with many of the data sets.)

Figure 3 shows the number of support vectors each
kernel type requires, compared with the performance
for each kernel type. The numbers reported in the fig-
ure are normalized averages across all ten data sets,
with the support vector count for each 10-fold cross
validation experiment being reported as a median and
classification error over the the 10-folds being reported
as an average. Note that while there is some variance
in performance between the different kernels, there is
a marked difference in numbers of support vectors re-
quired for that performance. In particular, the data-
dependent kernels require many fewer support vectors
on average than do the other kernel types.

Figure 1. Classification error using 10-fold cross validation
on the Spect data set for varying amounts of unlabeled
data. Data points on the curves represent the lowest error
value for any value of C for the traditional kernels and
any value of C and any value of θ for the data-dependent
kernels.
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Table 1. Performance comparison for various kernels, with and without RCA preprocessing. Results reported are the
highest average accuracy for any value of C and θ using 90% unlabeled data.

Chess German Heart Pima Spect Vote WBC1 WBC2 WBC3 ADA

DDK 21.7% 30.0% 24.7% 31.0% 20.3% 7.0% 5.7% 23.3% 8.0% 20.3%
RCA/DDK 15.2% 33.1% 28.9% 29.8% 20.1% 3.7% 6.1% 23.4% 4.8% 20.2%
Poly 5.0% 27.8% 18.0% 28.1% 20.3% 5.5% 4.4% 23.9% 5.9% 24.7%a

RCA/Poly 10.8% 29.1% 39.3% 33.9% 20.1% 17.8% 8.6% 23.5% 16.6% 40.2%
Gauss 10.2% 29.2% 25.6% 29.2% 20.4% 8.1% 6.0% 23.3% 5.9% 24.8%
RCA/Gauss 6.1% 27.1% 21.0% 26.5% 20.3% 3.6% 4.5% 23.4% 4.5% 16.4%
Mixed 4.6% 28.6% 21.0% 25.3% 20.6% 5.2% 5.4% 23.3% 6.0% 26.9%
RCA/Mixed 4.2% 28.8% 22.9% 27.8% 20.6% 3.7% 6.0% 23.9% 5.4% 16.7%

a the poly kernel learned to invert its output, so the reported value is actually (1− error)

Also, note that while RCA preprocessing results in a
reduction in support vector count for the traditional
kernels, there is an apparent lack of correlation be-
tween RCA preprocessing and number of support vec-
tors for the data-dependent kernel. This seems to sug-
gest that the semi-supervised clustering technique used
to construct the kernel is discovering the same infor-
mation that RCA is providing. This, in turn, suggests
an intimate link between (semi-supervised) clustering
and non-linear manifold learning techniques.

As further evidence of this, we examined the correla-
tion between RCA preprocessing and number of sup-
port vectors. Figure 4 shows a scatter plot of support
vector counts with and without preprocessing. Note

Figure 2. Classification error using 10-fold cross validation
on the WBC3 data set for varying amounts of unlabeled
data. Data points on the curves represent the lowest error
value for any value of C for the traditional kernels and
any value of C and any value of θ for the data-dependent
kernels.

the slopes of the trend lines indicate that RCA pre-
processing tends to reduce the number of support vec-
tors for polynomial, Gaussian and mixed kernels while
tending to slightly increase the number of support vec-
tors for the data-dependent kernel.

Figure 3. Support vector count vs. error rate – normalized
average median number of support vectors compared with
normalized average classification error. Averages are over
ten data sets. For support vector count, the median value
of the 10 folds was averaged over the ten data sets and then
normalized, while for classification error the average value
for the 10 folds was averaged over the ten data sets and
then normalized. Error values reported for each algorithm
are the best average for any value of C and θ with 90% of
the training data unlabeled.
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Figure 4. Correlation of number of support vectors with
and without RCA preprocessing. Data points represent
scaled (SV, SV) count pairs for the best average (10-fold
cross validation) accuracy for the ten data sets.

Figure 5 gives further evidence that the data-
dependent kernel is independently making gains asso-
ciated with RCA preprocessing for the other kernels.
It shows two scatter plots correlating the number of
clusters discovered with number of support vectors:
one using RCA preprocessing and one without. Trend
lines for both indicate a nice correlation – the more
clusters (and thus the higher their purity), the fewer
support vectors are required. Further, this negative
correlation is independent of RCA preprocessing.

However, it is not the case that RCA provides no ben-
efit as a preprocessing step to the data-dependent ker-
nel. As can be seen in Figure 3, there is a performance

Figure 5. Correlation of number of support vectors with
number of clusters. Data points represent scaled (cluster,
SV) count pairs for different values of θ for the ten data set.
Since the number of clusters is independent of the value of
C we arbitrarily chose C = 1.

Figure 6. Effect of cluster purity on accuracy for DDK –
classification error using 10-fold cross validation for ten
data sets for different values of θ in the data-dependent
kernel, both with and without RCA preprocessing. Re-
ported error values are averages over all ten data sets. The
SVM slack variable C was held constant at 1.0.

improvement when RCA is used. Figure 6 sheds fur-
ther light on this phenomenon by examining the effect
of cluster purity on classification error for the data-
dependent kernel. In the absence of RCA preprocess-
ing, classification performance appears robust to the
cluster purity threshold – “better” clusters do not im-
prove accuracy. However, after preprocessing, perfor-
mance improves as the purity threshold is increased;
therefore, RCA is providing some additional guidance
to the clustering algorithm that results in more effec-
tive clustering.

Finally, we mention an additional characteristic of note
for the data-dependent kernels – they are robust to the
value of the slack variable C. The only other kernel
that is comparable in this respect is the RCA/poly ker-
nel and its average error was much worse (see Figure
7). Note, that the effect is especially apparent when
RCA is combined with the data-dependent kernel, pro-
viding another benefit to preprocessing.

4. Discussion

We have presented an approach to building an explicit
data-dependent kernel based on the results of a semi-
supervised clustering of data. Since the kernel con-
struction is completely data driven, this technique is
intended primarily for use in data-rich settings such as
those involving transductive learning tasks.

When used in conjunction with a standard SVM,
the data-dependent kernel exhibits classification per-
formance competitive with several traditional kernels
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Figure 7. Robustness of various kernels to SVM slack –
classification error using 10-fold cross validation for the
ten data sets for different values of C for the different ker-
nels. The cluster purity threshold θ for the data-dependent
kernel was held constant at 90%.

while using significantly fewer support vectors. Fur-
ther, the data-dependent kernel’s production of sup-
port vectors exhibits characteristics often associated
with dimensionality reduction techniques (and which
the other kernels exhibit only after preprocessing for
dimensionality reduction). Even the data-dependent
kernel, however, gains some benefit from dimension-
ality reduction prepocessing, specifically, a reduction
in classification error due to increased cluster quality.
Also, preprocessing results in the data-dependent ker-
nel exhibiting a unique robustness to the value of the
SVM slack variable C.

Because we are deriving a data-dependent distance
metric, it is reasonable to question whether the dis-
tance metric itself contributes all of the classifica-
tion accuracy or if using the metric to kernelize an
SVM provides some benefit. Perhaps the most ob-
vious way to answer this question is to compare our
data-dependent kernel SVM with a k-NN model that
uses the data-dependent distance metric rather than
the standard Euclidean metric. Table 2 shows aver-
age of averages for classification error over nine differ-
ent data sets for 90% unlabeled data and makes two
things clear: RCA is beneficial for both k-NN and the
SVM, and the data-dependent SVM is more accurate
than data-dependent k-NN. Figure 8 shows average
error rates (over nine different data sets) for varying
amounts of unlabeled data for the data-dependent ker-
nel SVM and for data-dependent (distance weighted)
k-NN for several different values of k. Again, the re-
sults indicate that the SVM makes a significant con-
tribution to the performance we report here (in other

Table 2. Performance comparison for data-dependent [dis-
tance weighted] k-NN (k = 9) and data-dependent kernel
SVM, with and without RCA preprocessing. Results re-
ported are the average over nine data sets of the lowest
average error for any value of C and θ using 90% unla-
beled data.

k-NN DDK

no RCA 20.84% 19.79%
RCA 19.07% 18.35%

words, the distance metric is not doing all the work).

The current approach to building metaclusters is ad
hoc and can result in extremely nonlinear distance
metrics. While the stated goal of this research has
been to create a kernel based solely on the data, there
may be more principled approaches, in particular with
respect to enforcing both negative and positive cluster
constraints, that result in better generalization. Also,
it would be desirable to automatically choose values
for the parameters θ and κ that best fit the data. This
might be done for θ by measuring some global purity
value, such as an entropic measure, and for κ by mea-
suring some global variance property of the data. Of
course, the nature of the kernel construction may mean

Figure 8. Data-dependent Nearest Neighbor vs. Data-
dependent kernel SVM – best average classification error
(over data sets) using 10-fold cross validation for different
amounts of unlabeled data. The k-NN models use [data-
dependent] distance weighted voting. Averages reported
are the best average for any value of θ and any value of C
(for the SVM results).
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there is no principled way to select the two parame-
ters; however, most learning methods, including SVMs
of course, involve some amount of parameter tuning.
In fact, for SVMs the approach presented here greatly
simplifies the need to choose parameters by provid-
ing the kernel function automatically – choosing two
appropriate scalar values is likely much simpler than
picking an appropriate kernel function. (We note that
in practice using purity thresholds near the expected
classification accuracy often produced the best results,
though this is still a preliminary observation and not
yet well-supported experimentally).

Finally, the relationship between this clustering-based
kernel construction and (nonlinear) dimensionality re-
duction algorithms should be further explored. Tech-
niques used in manifold learning for preserving local
and global point-to-point distances on the manifold
may prove useful in aiding cluster formation, with the
result being data-driven automatic kernel construction
that natively discovers and makes use of the underly-
ing manifold.
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