
192 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 3, SEPTEMBER 2012

Experience-Driven Procedural Music
Generation for Games

David Plans and Davide Morelli

Abstract—As video games have grown from crude and simple
circuit-based artefacts to a multibillion dollar worldwide in-
dustry, video-game music has become increasingly adaptive.
Composers have had to use new techniques to avoid the tradi-
tional, event-based approach where music is composed mostly of
looped audio tracks, which can lead to music that is too repeti-
tive. In addition, these cannot scale well in the design of today’s
games, which have become increasingly complex and nonlinear
in narrative. This paper outlines the use of experience-driven
procedural music generation, to outline possible ways forward
in the dynamic generation of music and audio according to user
gameplay metrics.

Index Terms—Adaptive algorithm, genetic algorithms.

I. INTRODUCTION

T ODAY, game music reacts adaptively to player experi-
ence, foreshadowing upcoming events in gameplay, and

adding impact to major events. Instead of composing music to
specific game cues, composers are now asked to compose not
only different versions of the same cue (varying in intensity
or instrumentation), but also versions that adapt to changes in
player style.
In recent games, which usually contain very large open

worlds with open-ended narratives, it is often impossible to
knowwhat exact events will occur in the game during the length
of a particular audio segment. If a segment is simply looped,
it leads to tedium for the player, a problem acknowledged by
Tomas Dvorak, composer of the soundtrack to Machinarium
[1]: “Soundtrack music has to be more abstract to give space
for the image and also to not be annoying if it repeats” [2]. As
one of the most important roles of music in game design is to
immerse the player in the gameplay through emotional induc-
tion, avoiding tedium is paramount. This is particularly true
in mobile applications, which live and die by gameplay length
(time between launch and app termination), where emotional
engagement is therefore crucial, as mobile operating systems
typically kill the application right away when a “home” button
is used.

Manuscript received November 03, 2011; revised April 27, 2012; accepted
August 01, 2012. Date of publication August 13, 2012; date of current version
September 11, 2012.
D. Plans is with the School of Arts and New Media, University of Hull, Scar-

borough, North Yorkshire YO11 3AZ, U.K. (e-mail: d.plans@hull.ac.uk).
D. Morelli is with the Computer Science Department, University of Pisa, Pisa

I-56127, Italy (e-mail: info@davidemorelli.it).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2012.2212899

Procedural content generation (PCG) refers to the program-
matic (algorithmic) generation of game content. So far, it has
been used to produce dynamic, as opposed to precomputed, con-
tent such as light maps and levels. As a set of techniques, it of-
fers great advantages toward creating music that adapts more
granularly to player experience, avoiding needless repetition
and providing an evolving, more emotionally intelligent sound-
track. Repetition itself, in terms of composed music for games,
should, for the context of this paper, be understood to be inher-
ently counterproductive. Indeed, repetition in music is a known
device, and has been proven to have an effect on liking [3].
Studies locating repetition within an overall theory of musical
syntax to better understand its role in popular music, for ex-
ample, have usefully outlined its success as a mechanism of
musical production [4]. However, there is often a direct dis-
connect between the near nonlinearity of recent games, which
can contain open worlds and narratives, and the use of repeti-
tive music: often, users find the tail ends of composed pieces of
music simply “restarting,” having run out of timed gameplay.
This has prompted new games to have an increased number of
cues, for composers to work to. But as Collins examines, “com-
posers now commonly re-use cues in other areas of a game, to
reduce the amount of unique cues needed, but without creating
a repetitive sounding score” [5]. We believe that some of the
techniques outlined in this paper, while obviously not meant to
replace the work of a composer, or to label all repetition erro-
neous or facile, could help in bridging the gap between the in-
creasingly large scale of games and their music, the composer’s
dilemma, and what Collins terms “listener fatigue” [5, p. 269].
Procedural music can be defined as “composition that evolves

in real time according to a specific set of rules or control logics”
[6, p. 13]. More specifically, procedural generation of audio
can mean that audio events are stored as code and unpacked
when triggered to synthesize audio in real time, requiring only
text-based storage as opposed to sampled audio loops, offering
significant memory and storage savings.
Notwithstanding this advantage, PCG is not yet common in

game design. Primarily, this is because the complex control
logics that PCG demands are at odds with traditional budget al-
location for music, which must compete with graphics. Hiring
traditional composers is simply cheaper than hiring audio pro-
grammers. Also, procedural audio tends to be central processing
unit (CPU)-intensive and difficult to tie logistically to mean-
ingful game elements [6, p. 12].
However, new PCG techniques beyond the field of audio

design and music composition are emerging, modeling player
experience in order to create adaptive content [7]. While ex-
perience-driven PCG (EDPCG) is now primarily used to gen-

1943-068X/$31.00 © 2012 IEEE

PLANS AND MORELLI: EXPERIENCE-DRIVEN PROCEDURAL MUSIC GENERATION FOR GAMES 193

erate terrain, maps, levels, and weapons, “there is room for ap-
proaches other than those that have already been tried; both the
type of content generated and the algorithmic approach to gen-
erating it may change in the future” [7, p. 13].
In the context of PCG research, content is most often gener-

ated as a result of a stochastic search process, such as an evolu-
tionary algorithm, which will use a fitness function to evaluate
whether created content is appropriate. This is done over many
generations, where candidate content is ranked, some discarded,
some mutated, and further generations created.
The combination of procedural audio generation and experi-

ence modeling could provide ways forward in the design and
composition of both diegetic sound and music in large, vir-
tual environments such as open-world games, where traditional
composition and sampled audio techniques would not scale. At
the same time, it would provide more engaging player experi-
ences in traditional linear narratives, as well as other environ-
ments currently influenced by game design, such as therapeutic
systems, on-demand and in-flight entertainment systems, and
web 2.0 services.
This paper investigates whether recent findings in

search-based PCG (SBPCG) [8] and EDPCG could be ap-
plied to sound design and music composition. SBPCG refers
to a special case of the generate-and-test approach to PCG,
whereby the test function does not just accept or reject candi-
date content, but grades it according to a fitness function [8,
p. 4], and EDPCG expects to give this search-based approach
a model of the user experience that it can use to “generate
content that optimizes the experience for the player” [7, p. 3].
Both can be deployed in order to help avoid tedium in large
open-world and open-ended game environments, as well as
game-influenced aspects of industrial and medical design. We
will primarily focus on biologically inspired computational
intelligence, embeddable synthesis, and player experience
modeling to provide new pathways for music composition in
open narrative media.

A. The Origins—Algorithmic Composition

From Markov models, generative grammars, transition net-
works, evolutionary algorithms, and chaos theory, to agent,
neural, and cellular automata-based systems, algorithmic com-
position has a long history, which is now well documented
[9]. Algorithmic composition’s relationship to other environ-
ments, such as game design, is more recent. Entire generative
models have been developed for the automated composition
of music drawing on theories of emotion, perception, and
cognition [10], and models from computational intelligence
and stochastic computation in general [11]. Much work has
been done in the area of mood tagging and effect for adaptive
music, almost always using western-notational representations
of music through the Musical Instrument Digital Interface
(MIDI) standard to compose segments of music that match
particular “moods” [12]. However, while there is previous work
in wholly synthesized, generated audio (as opposed to MIDI) in
the algorithmic composition domain [13], little work has been
done on adaptive game audio, synthesized in real time, that uses
player experience modeling to drive adaptive content creation.

B. Precedents and Future of PCG in Game Development

Early game developers attempted to provide unique game-
play based on personal player style [14, p. 12], despite severely
limited storage space [15]. This adaptive process was mirrored
by music composers, who used repetition, transposition, and
other techniques to offer variation to the player. Algorithmic
sound design, which generates audio and music based on rules
and behaviors, has been used since the beginning of games de-
velopment. Usually combining sampled audio with synthesis, it
allows for flexible layering and real-time effects instead of just
a stereo mixdown of precomposed diegetic audio or music. Re-
active ambiences, for example, can be made of collections of
sampled audio loops; a country ambience made of bird song,
insects, and wind might die down in reaction to a gunshot fired
by a player or AI entity.
As early as 1987, Iwai’s Otocky [16] used the shooting con-

trols in the game to generate different harmonic palettes in the
background music, thus allowing the player to affect the game’s
music through gameplay itself, a concept he later developed
in SimTunes, a predecessor to many of today’s musical video
games.
Some LucasArts games, such asMonkey Island 2: LeChuck’s

Revenge [17], use iMuse, a software system that allows musical
changes to occur at very small intervals, approximately every
four measures, between a large number of branching musical
segments [15], depending on the player’s in-game exploration
choices and nonlinear dialog selections. The music–player in-
teraction afforded by iMuse has continued in many contempo-
rary games, such as Tron 2.0 (Monolith Productions, 2003), XIII
(Ubisoft Paris, 2003), and Heavy Rain (Cage, 2010), to offer
players direct structural control over the cinematic soundtrack
without giving them explicit clues as to how their choices affect
this music.
Very recent developments in embeddable audio engines such

as libpd [18], an adaptation of the Puredata (PD) dataflow lan-
guage as a signal processing library, mean that it is now pos-
sible to use PD for the creation of procedural music and game
audio at an industrial level, independent of game engine or pro-
gramming language. Spore (Electronic Arts, 2008) is one of the
first examples to implement this in the core design process, with
Electronic Arts and Brian Eno creating their own version of PD
(EApd) to embed within their core engine.
Kent Jolly and Aaron McLeran, the audio programmers in

Spore’s team who worked with Eno, described creating adap-
tive/procedural music as “a different way to compose,” where
you are actually “composing in probabilities” [19] using game
events to trigger musical variations.
In other spheres, sound generation is starting to play a key role

in the gameplay itself, in games such as Papa Sangre (Some-
thin’ Else Studio, 2010), which use binaural real-time sound to
give its users a sense of a 3-D soundworld.
However, as Collins points out, most algorithms used for

music control are “transformational, rather than truly genera-
tive,” due to the “difficulties in composing effective procedural
music for games” [6, p. 8].

194 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 3, SEPTEMBER 2012

Namely, this is because procedural music and sound has to
be bound by strict control logics in order to function adequately
within the constraints of game functions, such as action antici-
pation, leitmotif (within and across games), reward signals, and
emotional induction.
These control logics must enable the music to adapt quickly

to player input and in-game parameters, as well as be able to
change adaptively when situated in long gameplay. As most
modern games offer 40–60 h of scripted scenarios [6, p. 6],
and players can spend hours in particularly difficult parts of a
game, listening to music that is not adaptive can become tiring
and, crucially, boring. Designers and composers have reacted
by incorporating timing cues that will fade music out instead of
looping endlessly when in long periods of gameplay in the same
scenario, or in Spore’s case, the “density of the instrumentation
in the procedural music is reduced over time.” Procedural music
may thus “offer some interesting possibilities that may solve
some of these complications of composing for games” [6, p. 7].
When algorithms used in procedural music are not just trans-

formational, and are instead generative (according to the terms
discussed in [20]), they fit abstract game narratives better than
set narratives with traditional plot points. More recently, both
the Creatures series and Spore, relying heavily on procedural
generation for the creation of their game world, have opted for
more organic approaches, using very short samples of recorded
music (note units) to generate the soundtrack in real time ac-
cording to in-game parameters such as mood, environment, and
actions. Even here, however, the algorithmic strategy is mostly
transformational and simply stochastic (relying on rule-based
grammars), as opposed to purely generative.
An approach to generative algorithms in the procedural gen-

eration of audio and music that would not only take into account
in-game rule systems, but also search-based, experience-driven
parameters, would provide both better variety of transforma-
tional potential, and a more relevant emotional connection to
the player.We chose to take inspiration from the EDPCG frame-
work outlined by Pedersen [21], and closely modeled player be-
havior in order to derive musical rules and sets of variables we
could then use within our generative algorithms, which proce-
durally generate MIDI music in real time. Some of the musical
structure is generated by a simple iterative process, and some
generated by classical genetic algorithms. Below, we outline
this process.

C. Frustration, Challenge, and Fun

Following the EDPCG framework, we encoded frustration,
challenge, and fun as functions of the metrics of the player’s
gameplay, as contained within the MarioAI Championship en-
gine [22], with some modifications. MarioAI is a modified ver-
sion of Markus Persson’s Infinite Mario Bros, which is a public
domain clone of Nintendo’s Super Mario Bros, and was cre-
ated for the Mario AI Competition. The focus of the competi-
tion was “on developing controllers that could play a version
of Super Mario Bros as well as possible” using computational
intelligence [23]. We have adapted the Java source code of the
Level Generation Track of this competition in order to generate
adaptive music for MarioAI following the EDPCG model.

TABLE I
VALUES CHOSEN AS MULTIPLIERS

As our purpose was to generate adaptive music that would
take EDPCG into account, we decided to evaluate frustration,
challenge, and fun in real time in order to implement a musical
engine capable of reacting to the player’s mood as it changed
during gameplay.
First, we modified the DataRecorder class within the Mario-

AI engine in order to derive information about the timing of
events: every metric was transformed from a scalar value to an
array of values, representing the number of events regarding
that particular metric that occurred during a particular timespan.
For example, the first scalar of array coinsCollected contains the
number of coins the player collected during the first second of
the game (timespan 1 s).
Pedersen [21] showed that each of the frustration, challenge,

and fun functions has certain weighted correlations with each
of the gameplay metrics. Following their findings, we then as-
signed a as the multiplier for the th metrics. Thus, for the
th function, is positive if the th metric has a positive cor-
relation with the th function, negative if it has a negative cor-
relation, and zero if it is unrelated

(1)

where is one in frustration, challenge, or fun; is the th
metrics; and is the number of metrics.
Table I shows the values that were chosen as multipliers.

All the values are normalized on the time span to take into ac-
count, i.e., shells kicked: the number of shells kicked per second.
Values with a positive correlation with the metric taken into ac-
count have a positive multiplier (i.e., shells kicked and fun);
values with a negative correlation have a negative multiplier

PLANS AND MORELLI: EXPERIENCE-DRIVEN PROCEDURAL MUSIC GENERATION FOR GAMES 195

(i.e., alive time and challenge); values not correlated have amul-
tiplier equal to zero (i.e., running time and challenge).

D. Mapping of Frustration, Challenge, and Fun to Excitement

To keep the musical generation and its rules as simple and
obvious as possible, and to offer the player discernible musical
changes according to his mood, we decided to map frustration,
challenge, and fun to a single metric—target excitement—ex-
pressing the mood we try to induce in the player through the
music. In our context, we define “target excitement” following
this process: we want to excite and encourage the player if: 1)
he is not having a frustrating game (the contrast between the
gaming experience and the music would be disturbing); 2) he is
having fun; and 3) he is not challenged too far (to avoid rising
frustration). In this sense, fun is the most important metric in the
equation. All our variables (frustration, fun, and challenge) are
EDPCG metrics, implemented following its core literature.
To implement target excitement, we assigned weights to each

metric

target excitement fun challenge frustration
(2)

Fun was then positively correlated to excitement as its most
important indicator. Frustration and challenge should be nega-
tively related to excitement: themore difficult the game is for the
player, the more calming the music should be.We decided to use
the pentatonic mode as the calming target. The pentatonic and
minor scale is used to achieve a calming effect on listeners be-
cause it is the most common scale worldwide, primarily because
it lacks any dissonant intervals between its pitches. This makes
the pentatonic scale unique in that any of its pitch members can
be combined without harmonic clashes, and therefore offer the
listener no acoustic challenges. We focused on brightness and
major modes to react to excitement, in order to celebrate flow by
rewarding the user with obviously joyous-sounding music. By
traveling from exciting, bright, major-mode musical structure to
pentatonic, soft-filtered structures, we hope to both reduce the
frustration of playing a difficult game, and contribute to a state
of flow when challenge and skill are matched.

E. Generative Music Engine

Music is generated at runtime using frustration, challenge,
and fun as generative parameters. The generative engine has
been conceived to be as simple as possible, yet able to produce
simple tonal music. It is composed of the following parts, both
of which follow a classic genetic algorithm (GA) structure of
(Fitness)Selection–¿Crossover–¿Mutation–¿Offspring:
• harmonic sequence generator;
• period builder for the melodic line.
Every generator (chord sequence, melody) breeds new can-

didates every time the current item is ready (i.e., the last chord
of the current sequence has ended). The fitness function is then
used to select the winner from the candidates. Both the harmonic
sequence generator and the period builder work in real time, cre-
ating musical structures reacting to the excitement metric. The
music is generated as a stream of MIDI events.
The generators react in real time to the excitement metric with

the following rules:

• beats per minute: 120 beat/min for minimum excitement
(relaxed) and 135 beat/min for full excitement;

• scale: pentatonic scale is preferred for minimum excite-
ment, and full major scale is preferred for excitement;

• novelty: repetition of already heard material is preferred
for minimum excitement, and introduction of new material
is preferred for excitement;

• sparseness: phrases with sparse notes are preferred for
minimum excitement, and dense phrases are preferred for
excitement;

• resonant filter: low resonant filter is preferred for min-
imum excitement, and high resonant filter is preferred for
excitement.

1) Harmonic Sequence Generator: The harmonic sequence
generator works on a basic idea of harmony: chords. It is re-
sponsible for deciding the next group of chords with respect to
a history of all already played chords. A chord is expressed as
a main pitch over a particular scale. For example, the C major
chord in the C major key is a couple (main pitch, scale) where
main pitch (where 36 is the central C note in MIDI), and
scale , the C major scale in
MIDI notes; the fifth grade of the C major key would then have
the same scale as the previous example but 43 as the main pitch
(a G note). We give the engine the chord sequences (harmonic
functions) that we want to be used by the generator, for example,

, . For simplicity, we only insert chord
sequences in a single key (C major).
At runtime, every time a new chord sequence is needed, all

existing chord sequences are evaluated by the fitness function:
the chords contained in the sequence are matched against the
history of already played chords. An index of novelty is then
assigned to each sequence. Sequence has a high historic nov-
elty if it has not been heard before and a high inner novelty if it
contains many different chords

historic novelty (3)

where
if
if

(4)

and is the number of sequences in the history; and

inner novelty (5)

where is the th chord of the sequence and is the number
of chords in the sequence and

if
if

(6)

novelty historic novelty inner novelty. (7)

For every sequence , we calculate its error as

excitement novelty scale type (8)

where

scale type
if full major scales
if pentatonic scales.

(9)

196 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 3, SEPTEMBER 2012

Fig. 1. The Period and Harmonic generators at work.

Sequence with the minimum is chosen.
2) Period Builder: As well as chords, phrases are another

basic compositional notion we use in our engine. For our pur-
poses, phrase is a sequence of single MIDI notes.
A small set of phrases (, , , and , called seeds)

is defined at compile time, which are hardcoded. A large
number of variations of each seed is then generated
(, etc.). A variation is a small change
in a phrase where a random note is either deleted, added, or
modified, and we use this as a basic transformative mechanism
in crossover.
A period is a sequence of phrases: .

A set of phrases is defined as a compile time
(etc.)
and a large number of variations is generated. A variation is
the substitution of a phrase with one of its variations (
is a variation of), which we use as the basic process of
mutation.
Similarly to what is done with the harmonic sequence gener-

ator, every time a new period is needed, all the existing periods
are evaluated by fitness functions: the period is matched against
the history of already played periods, using the historic novelty
formula defined in Section I-E1

historic novelty (10)

Also, the density of a period is defined as the average value of
the density of the phrases. The density of a phrase is defined as
the number of notes in the phrase divided by 16 (the maximum
number of notes a phrase can hold in its genotype)

density density (11)

where is the number of phrases in the period and density

excitement historic novelty density (12)

The period with the minimum is chosen.

F. JMusic RTLines

Throughout the definition of genotypical material such as
phrases and chords, we use JMusic [24], a Java environment for

music composition designed to assist the compositional process
by providing an open but partially structured environment for
musical exploration. JMusic was chosen because it fit with Mar-
ioAI’s Java environment, and because it already contained mu-
sical notions that we could use to model variables and game
metrics from player experience into audible events, contained in
Java classes such as Note and Phrase. While JMusic is primarily
designed to create music offline, a few classes for real-time gen-
eration of music, notably RTLine, can be used to generate music
on the fly. Our Harmonic and Period generator helps to build
such a stream using an RTComposition, a class that amalga-
mates the different generative streams within our engine, and
composes RTLines using a synthesized instrument, SawLPFIn-
stRT2, which is then used to transform the note-by-note infor-
mation from our stream into synthesized audio.
Fig. 1 outlines the audio engine’s process.

II. TESTING

We carried out a small perceptual study that embedded the
MarioAI Applet in a Java-WebStart webapp running Node.JS
and MongoDB. We modified the Applet to send JavaScript
Object Notation (JSON) data directly from our embedded
gameplay metrics. The study ran for two rounds each game,
and two games per tester. After the first game, a small form
was presented to the user to ask pertinent questions (Are you a
musician? Have you played Mario before? Did you enjoy this
game?). After the second game, only enjoyment was measured
through the questionnaire. Question results and metrics were
then bundled into JSON packages and sent to our server.
In all, we ran it through 31 testers, eight of which were non-

musicians, 17 played an instrument but were not musicians, and
six were actual musicians. Our results, from a small userbase,
were inconclusive, although interesting. We would like to ex-
pand this next, with adequate time and social advertising.

A. Test Data

All our metrics were expressed in a floating point scale from
0 to 1. In all two-round games, the frustration during the first
round was generally higher than during the second round: 90th
percentile in the first round was 0.48 (average value 0.11 with
0.29 standard deviation), while in the second round, it was 0 (av-
erage value 0.00 with 0.01 standard deviation). Frustration was

PLANS AND MORELLI: EXPERIENCE-DRIVEN PROCEDURAL MUSIC GENERATION FOR GAMES 197

0 on 77% of the time in the first round and 0 on 93% of the time
in the second; this indicates that the second round was almost
always easier for all the players while the first round was some-
times frustrating. This was to be expected, as less experienced
users get used to controls and game dynamics during their first
round. We built a randomization system that presented either
a game round with generative music, or a precomposed MIDI
track alternatively, each time a test was requested. Of all tests,
the first round was generative 0.61 of the time. Contrary to our
expectations, average frustration during the generative round
was equal to the MIDI round, with 0.08 (with 0.25 standard de-
viation) for generative and 0.03 (with 0.15 standard deviation)
for MIDI rounds. Generative rounds were prevalent during the
first round, which we think probably biased bad results for gen-
erative rounds. However, the frustration average during genera-
tive rounds was consistently lower than the frustration average
during first rounds overall, which could be taken to mean that
generativemusic helped in lowering player stress during the first
round of play; however, without adequate measurement systems
such as galvanic skin response and heart rate, and an adequate
clinical protocol with physically present users, as opposed to re-
mote ones, we cannot offer proof of this.
1) Enjoyment and Fun—Similar Results: We found that fun

levels in our metrics looked approximately the same during
gameplay (average fun during generative round: 0.61 with
0.29 standard deviation; average fun during MIDI round: 0.64
with 0.29 standard deviation). Enjoyment also looked the same
during generative and MIDI rounds (average enjoyment during
generative rounds was 0.66 with 0.35 standard deviation and
average enjoyment during MIDI rounds was 0.67 with 0.33
standard deviation). Users reported the same level of enjoy-
ment 77% of the time, which gave us inconclusive results as
to whether generative music, which may have helped lower
stress during first rounds, contributed at all to overall levels
of enjoyment. Nonetheless, such a high percentage of users
selecting the same level of enjoyment could indicate a poor
test design: users may have given the same answer because we
offered only three choices (“I enjoyed this round,” “I almost
enjoyed this round,” and “I didn’t enjoy this round”) leading to
users giving the same answer for both rounds. When the users
reported a different level of enjoyment in the two rounds, the
generative round was preferred 57% of the time. More testing
and better test design is required to understand if the slightly
higher number of preferred generative rounds is statistically
relevant.

B. Future Testing and Work

While the user testing group was too small to give us enough
data to successfully prove generative music helped gameplay,
we hope to test with larger groups and using a better test design
later on. We are encouraged that frustration averages seemed
consistently lower during generative rounds, and we hope that
on much larger groups, we could gather conclusive data to il-
lustrate this effect. We hope to leave the experiment running at
its base URL, and to point to it from ongoing Facebook advert
campaigns, over a period of a few months.

III. CONCLUSION

While algorithmic composition and procedural music both
have a long history as academic disciplines and within the game
industry, player behavior modeling, and in particular, adaptive
audio engines that listen to such a model are still rare. While
games like Spore go a long way toward embedding normally
academic music and synthesis engines like Puredata into studio-
produced games, the state of the art still relies on engines such as
iMuse, technology from 1991, for seamless musical component
building that adapts to player decisions, trying to connect pieces
of music as the player moves from area to area, using the idea of
seamless musical “bridges” to connect major pieces of music.
This paper proposes that paradigms such as EDPCG,

and ideas from computational intelligence in use in player
experience modeling, could transfer into adaptive musical
composition for games. It proposes the use of tried-and-tested
evolutionary algorithms subsuming the idea of EDPCG as one
example of using computational intelligence to achieve this.
We think that such an approach could help build adaptive audio
engines to supersede tools such as iMuse, pointing the way
forward for music in games that is not just linear and scene re-
active, without necessarily demanding large investment. While
libraries like JMusic are practical for the purposes of engaging
with a competition-driven environment such as MarioAI,
embedded composition environments such as libpd can now
be used and embedded in most major programming languages.
This makes them accessible to popular game engines such as
Unity and indeed iOS/Android and HTML5 environments,
which puts decades of research into algorithmic composition
and real-time audio synthesis at the fingertips of not just AAA
studios, but also amateur and indie developers, from whom so
often come gameplay ideas that change the field.

REFERENCES

[1] Machinarium [Online]. Available: http://machinarium.net/
[2] Game-OST [Online]. Available: http://game-ost.com/articles.

php?id=76action=view
[3] D. J. Hargreaves, “The effects of repetition on liking for music,” J. Res.

Music Edu., vol. 32, no. 1, pp. 35–47, 1984.
[4] R. Middleton, “‘Play it again Sam’: Some notes on the productivity

of repetition in popular music,” Popular Music, vol. 3, pp. 235–270,
1983.

[5] K. Collins, “An introduction to the participatory and non-linear aspects
of video games audio,” in Essays on Sound and Vision, S. Hawkins and
J. Richardson, Eds. Helsinki, Sweden: Helsinki Univ. Press, 2007,
pp. 263–298.

[6] K. Collins, “An introduction to procedural music in video games,”
Contemporary Music Rev., vol. 28, no. 1, pp. 5–15, 2009.

[7] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Trans. Affective Comput., vol. 2, no. 3, pp.
147–161, Jul.–Sep. 2011.

[8] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation,” in Applications of Evolutionary Com-
putation, ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2010, vol. 6024, pp. 141–150.

[9] G. Nierhaus, Algorithmic Composition: Paradigms of Automated
Music Generation. New York: Springer-Verlag, 2009.

[10] D. Birchfield, “Generative model for the creation of musical emotion,
meaning, and form,” in Proc. ACM SIGMM Workshop Exp. Telep-
resence, 2003, pp. 99–104 [Online]. Available: http://doi.acm.org/10.
1145/982484.982504

[11] W. Hsu, “Strategies for managing timbre and interaction in automatic
improvisation systems,” Leonardo Music J., vol. 20, pp. 33–39, 2010.

198 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 3, SEPTEMBER 2012

[12] M. Eladhari, R. Nieuwdorp, and M. Fridenfalk, “The soundtrack of
your mind: Mind music—Adaptive audio for game characters,” in
Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertain. Technol., 2006
[Online]. Available: http://doi.acm.org/10.1145/1178823.1178887

[13] M. J. Yee-King, “An automated music improviser using a genetic al-
gorithm driven synthesis engine,” in Proc. EvoWorkshops EvoCoMnet,
EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC and
EvoTransLog: Appl. Evol. Comput., 2007, pp. 567–576.

[14] R. DeMaria and J.Wilson, High Score!: The IllustratedHistory of Elec-
tronic Games, ser. Computer Games. New York: McGraw-Hill/Os-
borne, 2003.

[15] K. Collins, Game Sound: An Introduction to the History, Theory, and
Practice of Video Game Music and Sound Design. Cambridge, MA:
MIT Press, 2008.

[16] T. Iwai, Otocky, 2011 [Online]. Available: http://www.youtube.com/
watch?v=S9niZfECTPk

[17] LucasArts,Monkey Island 2, 2011 [Online]. Available: http://www.lu-
casarts.com/games/monkeyisland2/

[18] Girorius, libpd, 2011 [Online]. Available: http://gitorious.org/pdlib
[19] D. Kosak, “The bet goes on: Dynamic music in Spore,” GameSpy,

Feb. 20, 2008 [Online]. Available: http://uk.pc.gamespy.com/pc/spore/
853810p1.html

[20] R. Wooller, A. R. Brown, E. Miranda, J. Diederich, and R. Berry, “A
framework for comparison of process in algorithmic music systems,”
in Generative Arts Practice, B. David and E. Ernest, Eds. Sydney,
Australia: Creativity and Cognition Studios, 2005, pp. 109–124.

[21] C. Pedersen, “Modeling player experience for content creation,” IEEE
Trans. Comput. Intell. AI Games, vol. 2, no. 1, pp. 54–67, Mar. 2010.

[22] J. Togelius, “2011 Mario AI Championship,” [Online]. Available:
http://www.marioai.org/

[23] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario AI
competition,” in Proc. IEEE Congr. Evol. Comput., Jul. 2010, DOI:
10.1109/CEC.2010.5586133.

[24] A. R. Brown and A. C. Sorensen, “Introducing jmusic,” in Proc. Aus-
tralasian Comput. Music Conf., A. R. Brown and R. Wilding, Eds.,
Brisbane, Qld., Australia, 2000, pp. 68–76.

David Plans is a Lecturer in Music at the School of Arts and New Media, Uni-
versity of Hull, Scarborough, North Yorkshire, U.K. He has given papers and
performances at the International Computer Music Conference, the European
Conference on Artificial Life, the Darwin Symposium, and the Computer Arts
Society in London. His early studies were in classical music in several world
Conservatories; he then pursued BaHONS and Ph.D. studies in music and com-
puter science at the University of East Anglia. His doctoral research used evo-
lutionary computation techniques, in particular genetic coevolution, as applied
to MPEG7, in order to create reflexive music systems. His current research fo-
cuses on adaptive media algorithms for therapeutic uses.

Davide Morelli is currently working toward the Ph.D. degree in computer sci-
ence at the University of Pisa, Pisa, Italy, where his research focuses on energetic
models for algorithms.
He is a Computer Scientist, a musician, and an entrepreneur. He has run a

software consultancy (Parser s.r.l.) since 2001, focusing on customized busi-
ness solutions, distributed software, and SharePoint consultancy. He is also an
expert High Performance Computing Engineer, serving as the cluster manager
of ITCenter, the first Acer HPC Competence Centre, and teaches mobile appli-
cations programming at the Graduate School, University of Pisa. As a musician,
he achieved a Diploma in Saxophone performance at Livorno Conservatory and
is an active composer, having written music for ballet, theater, and short films
in both experimental electronic and orchestral forms.

