
Procedural House Generation:
A method for dynamically generating floor plans

Jess Martin∗†

University of North Carolina, Chapel Hill

Figure 1: Left: Modeled house based on floor plan generated by algorithm. Right: Top-down view of same floor-plan.

As the capability to render complex, realistic scenes in real time
increases, many applications of computer graphics are hitting the
problem of manual model creation. In virtual reality, researchers
have found that creating and updating static models is a difficult and
time-consuming task [Brooks 1999]. New games require massive
amounts of content. Creating such content is such an expensive
process that it may drive smaller companies out of business [Wright
2005]. Content creators cannot keep up with the increasing demand
for many high-quality models; algorithms will have to be called
upon to assist.

Procedural methods, algorithms that specify some characteristic of
a scene and generate a model [Ebert et al. 2002], are a possible
solution to the content creation problem. With such methods, the
algorithm, not an artist, determines the detailed attributes of the
scene–attributes ranging from color to motion to objects.

Recently, procedural methods have been applied to generating man-
made artifacts including cities. Parish and Müller used L-systems
to generate a city street map and geometry and textures for build-
ings within the city [Parish and Müller 2001]. Focusing on city
modeling, Greuter et al. describe a procedure to generate build-
ings based on vertical extrusion of randomly generated polygons
[Greuter et al. 2003]. Lechner et al. use an agent-based simulation
to generate a city map but do not attempt buildings [Lechner et al.
2003]. Though some of the buildings appear believable, each of
these research efforts focused on the realistic creation of the city
rather than the buildings themselves. Wonka et al. focus more on
the appearance of the buildings using a “split grammar” to control
the external appearance so that it conforms to architectural rules
[Wonka et al. 2003].

∗e-mail: jmartin@cs.unc.edu
†url: http://www.cs.unc.edu/∼eve/research/procedural/

To date, procedurally generated buildings: 1) are merely textured
façades, containing no internal structure, 2) represent commercial-
style buildings that would be seen in a medium-to-large city, and 3)
do not reflect architectural knowledge, with the exception of Wonka
et al [2003].

This poster introduces a method for procedurally generating a res-
idential unit (a house) automatically. Combining insights from ar-
chitecture and graph theory, the primary method used in generating
the house is a grammar which constructs a graph of the rooms and
connections between rooms. The rules of the grammar are based
on architectural observations and are capable of accurately model-
ing houses in the style from which the rules were drawn. Rooms
reach their appropriate sizes using Monte Carlo semi-deformable
growth.

Our method of building generation is fundamentally different than
methods previously discussed. Most other methods only undertake
to generate exteriors of buildings with no interior structure or lay-
out. Our method begins with the interior and uses the interior struc-
ture to dictate the exterior appearance.Most other methods focus
primarily on commercial buildings–office buildings, skyscrapers,
and other large, fairly regular buildings. In exploring the problem
of procedurally generated buildings, we found residential buildings
to be more complex due to their immense variety and irregularity
and chose them as the target for our new method. We know of no
other published algorithm that does so.

1 Graph Generation

We represent the basic structure of a house as a graph with each
node corresponding to a room and each edge corresponding to a
connection between rooms. In the first step of the procedure, a



graph encoding of rooms is generated. The graph generation phase
itself occurs in four steps.

Two techniques are used in the graph generation phase: a context-
free grammar and a user-defined ruleset. We found grammars to
be appropriate for “growing” the structure of the graphs, but they
are ill-suited to capture the semantics of the graph. To account for
the semantics, we used a ruleset to maintain both local and global
information about rooms in the graph.

Adding Public Rooms The graph generation phase begins by de-
termining the structure of the public rooms. The front door of the
house is added first and production progresses using a context-free
grammar. This step is solely responsible for structure, not seman-
tics. Thus, the rooms added are not yet a specific type of room.

Specifying Public Rooms Step two assigns a type (living room, din-
ing room, etc) to each public room by using four statistics for each
type of room. The use of these statistics allows the creation of more
realistic spaces than using the grammar alone. Additionally, these
statistics can easily be modified by a user who would like finer con-
trol over the types and connections of rooms in a house. However,
in the absence of user specifications, the statistics system can still
behave intelligently to mimic average American houses.

Adding Private Rooms After steps one and two, the graph has a
set of public rooms. Step three randomly places private rooms ad-
joining public rooms until the private space is filled. Private rooms
should only be accessible by means of a public room.

Adding Stick-on Rooms The final step in creating the graph con-
sists of adding a few remaining rooms that are well-suited to be-
ing “stuck on” at the last minute, for example closets and pantries.
These rooms can be added quickly and without impacting any of
the other rooms already in the graph. The statistics system also aids
in this step to ensure logical connections.

2 Placing Rooms

At the beginning of this stage, the types of rooms and the connec-
tions between them have been completely determined. However,
the rooms are not located in space. The placement phase distributes
the rooms over the footprint.

This process treats the graph as a tree with its root at the room that
adjoins the front door. From that root, the root’s child nodes are
then evenly distributed beneath the root with each child spread an
equal distance from other children and an equal distance from the
root. The process is then repeated for each of the children nodes.
The resulting distribution of rooms can be observed in Figure 5.

3 Expanding Rooms

Rooms are expanded to their proper size using a Monte Carlo
method to choose which room to grow or shrink next. Every room
in the graph exerts an outward “pressure” proportionate to the size
the room should be relative to other rooms. Walls that are shared
between rooms have pressure on them from both sides.

The four walls of the room are examined in turn. The decision of
whether to grow or shrink a room by moving a wall is based on
the difference between the pressure inside the room pushing out
and the sum of the pressures pushing in on that wall from adjacent
rooms. If the pressure from the inside is greater than the sum of
the pressures from the outside, the room will expand by moving the

wall under consideration a fraction of the footprint. If the pressure
from outside is greater than that from inside, no expansion takes
place.

4 Discussion and Future Work

We implemented our algorithm in Java 1.5, executing the timing
trials on a PowerMac G5 Dual 2.0GHz with 1GB of RAM. The
algorithm exhibits run time suitable for real-time applications, ca-
pable of generating 50,000 houses in under 3 minutes.

We have presented a procedural algorithm to generate plausible res-
idential interiors. Our approach offers a high degree of automa-
tion with the option of precisely specifying details through the use
of rulesets and statistics. Our method augments the context-free
grammar often used in procedural model generation with rulesets
that complement the generative qualities of the grammar by enforc-
ing adherence to observed architectural patterns. Our method is
novel because it focuses on the internal structure rather than just
an external facade and it generates houses rather than more regular
industrial buildings.

We believe that procedural methods for modeling man-made arti-
facts dramatically reduce the need for human labor in the field of
3D model design.

References

BROOKS, F. P. 1999. What’s real about virtual reality? IEEE
Computer Graphics and Applications 19, 6, 16–27.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling: A Procedural
Approach, third ed. Morgan Kaufmann.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G. 2003.
Real-time procedural generation of ‘pseudo infinite’ cities. In
Computer graphics and interactive techniques in Australasia
and South East Asia.

LECHNER, T., WATSON, B. A., WILENSKY, U., AND FELSEN,
M. 2003. Procedural city modeling. In 1st Midwestern Graphics
Conference.

PARISH, Y. I. H., AND MÜLLER, P. 2001. Procedural modeling
of cities. In SIGGRAPH ’01: Proceedings of the 28th Annual
Conference on Computer Graphics and interactive Techniques,
ACM Press, New York, NY, USA, 301–308.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. In ACM Transactions on Graphics
22, no. 3, 669–677.

WRIGHT, W., 2005. The future of content. Speech, Game Devel-
oper’s Conference 2005.


