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Abstract

Automatically generating coherent and semantically mean-
ingful text has many applications in machine translation, di-
alogue systems, image captioning, etc. Recently, by com-
bining with policy gradient, Generative Adversarial Nets
(GAN) that use a discriminative model to guide the train-
ing of the generative model as a reinforcement learning pol-
icy has shown promising results in text generation. However,
the scalar guiding signal is only available after the entire text
has been generated and lacks intermediate information about
text structure during the generative process. As such, it lim-
its its success when the length of the generated text samples
is long (more than 20 words). In this paper, we propose a
new framework, called LeakGAN, to address the problem for
long text generation. We allow the discriminative net to leak
its own high-level extracted features to the generative net to
further help the guidance. The generator incorporates such
informative signals into all generation steps through an ad-
ditional MANAGER module, which takes the extracted fea-
tures of current generated words and outputs a latent vec-
tor to guide the WORKER module for next-word generation.
Our extensive experiments on synthetic data and various real-
world tasks with Turing test demonstrate that LeakGAN is
highly effective in long text generation and also improves the
performance in short text generation scenarios. More impor-
tantly, without any supervision, LeakGAN would be able to
implicitly learn sentence structures only through the interac-
tion between MANAGER and WORKER.

Introduction

The ability to generate coherent and semantically meaning-
ful text plays a key role in many natural language processing
applications such as machine translation (Yang et al. 2017),
dialogue generation (Li et al. 2017), and image captioning
(Fang et al. 2015). While most previous work focuses on
task-specific applications in supervised settings (Bahdanau,
Cho, and Bengio 2014; Vinyals et al. 2015), the generic un-
supervised text generation, which aims to mimic the distri-
bution over real text from a corpus, has recently drawn much
attention (Graves 2013; Yu et al. 2017; Zhang et al. 2017;
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Hu et al. 2017). A typical approach is to train a recurrent
neural network (RNN) to maximize the log-likelihood of
each ground-truth word given prior observed words (Graves
2013), which, however, suffers from so-called exposure bias
due to the discrepancy between training and inference stage:
the model sequentially generates the next word based on pre-
viously generated words during inference but itself is trained
to generate words given ground-truth words (Huszér 2015).
A scheduled sampling approach (Bengio et al. 2015) is pro-
posed to addressed this problem, but is proved to be funda-
mentally inconsistent (Huszar 2015). Generative Adversar-
ial Nets (GAN) (Goodfellow et al. 2014), which is firstly
proposed for continous data (image generation etc.), is then
extended to discrete, sequential data to alleviate the above
problem and has shown promising results (Yu et al. 2017).
Due to the discrete nature of text samples, text generation
is modeled as a sequential decision making process, where
the state is previously generated words, the action is the next
word to be generated, and the generative net G is a stochas-
tic policy that maps current state to a distribution over the
action space. After the whole text generation is done, the
generated text samples are then fed to the discriminative net
D, a classifier that is trained to distinguish real and gener-
ated text samples, to get reward signals for updating G.

Since then, various methods have been proposed in text
generation via GAN (Lin et al. 2017; Rajeswar et al. 2017;
Che et al. 2017). Nonetheless, the reported results are lim-
ited to the cases that the generated text samples are short
(say, fewer than 20 words) while more challenging long text
generation is hardly studied, which is necessary for practi-
cal tasks such as auto-generation of news articles or product
descriptions. A main drawback of existing methods to long
text generation is that the binary guiding signal from D is
sparse as it is only available when the whole text sample is
generated. Also, the scalar guiding signal for a whole text is
non-informative as it does not necessarily preserve the pic-
ture about the intermediate syntactic structure and semantics
of the text that is being generated for G to sufficiently learn.

On one hand, to make the guiding signals more informa-
tive, discriminator D could potentially provide more guid-
ance beside the final reward value, since D is a trained
model, e.g. a convolutional neural network (CNN) (Zhang
and LeCun 2015), rather than an unknown black box. With
that idea, (Zhang et al. 2017) proposed to train generator G



via forcing learned feature representations of real and gen-
erated text by D to be matched, instead of directly train-
ing G to maximize the reward from D (Yu et al. 2017).
Such a method can be effective in short text generation, but
the guiding signals are still absent until the end of the text
(Zhang et al. 2017).

On the other hand, to alleviate the sparsity problem of the
guiding signal, the idea of hierarchy naturally arises in text
generation, since the real text samples are generated follow-
ing some kinds of hierarchy such as the semantic structure
and the part-of-speech (Mauldin 1984). By decomposing the
whole generation task into various sub-tasks according to the
hierarchical structure, it becomes much easier for the model
to learn. Early efforts have been made to incorporate the
hierarchy idea in text generation (Dethlefs and Cuayahuitl
2010; Peng et al. 2017) but all use a predefined sub-task set
from domain knowledge, which makes them unable to adapt
to arbitrary sequence generation tasks.

In this paper, we propose a new algorithmic framework
called LeakGAN to address both the non-informativeness
and the sparsity issues. LeakGAN is a new way of provid-
ing richer information from the discriminator to the gener-
ator by borrowing the recent advances in hierarchical rein-
forcement learning (Vezhnevets et al. 2017). As illustrated in
Figure 1, we specifically introduce a hierarchical generator
G, which consists of a high-level MANAGER module and a
low-level WORKER module. The MANAGER is a long short-
term memory network (LSTM) (Hochreiter and Schmidhu-
ber 1997) and serves as a mediator. In each step, it receives
generator D’s high-level feature representation, e.g., the fea-
ture map of the CNN, and uses it to form the guiding goal
for the WORKER module in that timestep. As the informa-
tion from D is internally-maintained and in an adversarial
game it is not supposed to provide GG with such information.
We thus call it a leakage of information from D.

Next, given the goal embedding produced by the MAN-
AGER, the WORKER first encodes current generated words
with another LSTM, then combines the output of the LSTM
and the goal embedding to take a final action at current state.
As such, the guiding signals from D are not only available
to G at the end in terms of the scalar reward signals, but
also available in terms of a goal embedding vector during
the generation process to guide G how to get improved.

We conduct extensive experiments based on synthetic and
real data. For synthetic data, LeakGAN obtains much lower
negative log-likelihood than previous models with sequence
length set to 20 and 40. For real data, we use the text in
EMNLP2017 WMT News, COCO Image Caption and Chi-
nese Poems as the long, mid-length and short text corpus,
respectively. In all those cases, LeakGAN shows signifi-
cant improvements compared to previous models in terms
of BLEU statistics and human Turing test. We further pro-
vide a deep investigation on the interaction between MAN-
AGER and WORKER, which indicates LeakGAN implicitly
learns sentence structures, such as punctuation, clause struc-
ture and long suffix without any supervision.
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Figure 1: An overview of our LeakGAN text generation
framework. While the generator is responsible to generate
the next word, the discriminator adversarially judges the
generated sentence once it is complete. The chief novelty
lies in that, unlike conventional adversarial training, during
the process, the discriminator reveals its internal state (fea-
ture f;) in order to guide the generator more informatively
and frequently. (See Methodology Section for more details.)

Related Work

Generating text that mimics human’s expression has been
studied for poem generation (Zhang and Lapata 2014), im-
age captioning (Vinyals et al. 2015), dialogue system (Li et
al. 2017) machine translation (Yang et al. 2017). (Graves
2013) proposed a recurent neural network (RNN) based gen-
erative model to use the human-generated text where at each
step the model tries to predict the next word given previous
real word sequence and is trained in a supervised fashion.
A common difficulty of all supervised generative models
is that it is hard to design an appropriate, differentiable, low-
bias metric to evaluate the output of the generator, which
inspires the adversarial training mechanisms. (Goodfellow
et al. 2014) proposed generative adversarial nets (GANs)
to generate continuous data like images. GAN introduces a
minimax game between a generative model and a discrimi-
native model, where the discriminator can be viewed as the
dynamically-updated evaluation metric to guide the tuning
of the generated data. To apply GANs to text generation,
(Yu et al. 2017) proposed SeqGAN that models the text gen-
eration as a sequential decision making process and trains
the generative model with policy gradient methods (Sutton
et al. 1999). MaliGAN (Che et al. 2017) modifies the orginal
GAN objective and proposes a set of training techniques to
reduce the potential variance. To deal with the gradient van-
ishing problem of GAN, RankGAN (Lin et al. 2017) pro-
poses an alternative solution to this problem by replacing the
original binary classifier discriminator with a ranking model
by taking a softmax over the expected cosine distances from
the generated sequences to the real data. Another problem
for the adversarial sequence generation models is that the
binary feedback from the discriminator is not sufficiently
informative, which requires a huge number of training and



generated samples to improve the generator and could result
in mode collapse problems. Feature Matching (Zhang et al.
2017) provides a mechanism that matches the latent feature
distributions of real and generated sequences via a kernel-
ized discepancy metric to alleviate the weak guidance and
mode collapse problems. However, such enhancement only
happens when the whole text sample is generated and thus
the guiding signal is still sparse during the training.

Reinforcement learning (RL) on the other hand also faces
a similar difficulty when reward signals are sparse (Kulkarni
et al. 2016). Hierarchical RL is one of the promising tech-
niques for handling the sparse reward issue (Sutton, Precup,
and Singh 1999). A typical approach in hierarchical RL is
to manually identify the hierarchical structure for the agent
by defining several low-level sub-tasks and learning micro-
policies for each sub-task while learning a macro-policy for
choosing which sub-task to solve. Such methods can be very
effective when the hierarchical structure is known a priori
using domain knowledge in a given specific task, but fail
to flexibly adapt to other tasks. Recently, (Vezhnevets et al.
2017) proposed an end-to-end framework for hierarchical
RL where the sub-tasks are not identified manually but im-
plicitly learned by a MANAGER module which takes current
state as input and output a goal embedding vector to guide
the low-level WORKER module.

In this work, we model the text generation procedure via
adversarial training and policy gradient (Yu et al. 2017). To
address the sparse reward issue in long text generation, we
follow (Vezhnevets et al. 2017) and propose a hierarchy de-
sign, i.e. MANAGER and WORKER, for the generator. As the
reward function in our case is a discriminative model rather
than a black box in (Vezhnevets et al. 2017), the high-level
feature extracted by the discriminator given the current gen-
erated word sequence is sent to the MANAGER module. As
such, the MANAGER module can be also viewed as a spy that
leaks information from the discriminator to better guide the
generator. To our knowledge, this is the first work that con-
siders the information leaking in GAN framework for better
training generators and combines hierarchical RL to address
long text generation problems.

Methodology

We formalize the text generation problem as a sequen-
tial decision making process (Bachman and Precup 2015).
Specifically, at each timestep ¢, the agent takes the previ-
ously generated words as its current state, denoted as s; =
(1,...,24,...,2¢), where x; represents a word token in
the given vocabulary V. A #-parameterized generative net
Gy, which corresponds to a stochastic policy, maps s; to a
distribution over the whole vocabulary, i.e. Gy(-|s¢), from
which the action ;4 1, i.e. the next word to select is sam-
pled. We also train a ¢-parameterized discriminative model
D, that provides a scalar guiding signal Dy (s7) for Gy to
adjust its parameters when the whole sentence s has been
generated.

As we discussed previously, although the above adversar-
ial training is principled, the scalar guiding signal becomes
relatively less informative when the sentence length 7" goes
larger. To address this, the proposed LeakGAN framework

allows discriminator Dy to provide additional information,
denoted as features f;, of the current sentence s; (it is in-
ternally used for Dy itself for discrimination) to genera-
tor Gg(-|s¢). In LeakGAN, a hierarchical RL architecture
is used as a promising mechanism to effectively incorporate
such leaked information f; into the generation procedure of
Gl (also see Figure 1).

Leaked Features from D as Guiding Signals

Different from typical model-free RL settings where the re-
ward function is a black box, our adversarial text generation
uses D as a learned reward function. Typically, Dy is a neu-
ral network and can be decomposed into a feature extractor
F(-; ¢) and a final sigmoid classification layer with weight
vector ¢;. Mathematically, given input s, we have

Dy(s) = sigmoid(¢;' F(s;¢5)) = sigmoid(¢; f), (1)

where ¢ = (¢5,¢;) and sigmoid(z) = 1/(1 + e 7).
f = F(s;¢y) is the feature vector of s in the last layer
of Dy, which is to be leaked to generator Gg. As is shown
in Eq. (1), for a given Dy, the reward value for each state
s mainly depends on the extracted features f. As such, the
objective of getting a higher reward from Dy is equivalent
to finding a higher reward region in this extracted feature
space F(S;¢5) = {F(s; ¢r)}ses. Specifically, our feature
extractor F (- ; ¢) in D is implemented by a CNN (Zhang
and LeCun 2015); thus F(s;¢y) outputs the CNN fea-
ture map vector as f after its convolution-pooling-activation
layer. Other neural network models such as LSTM (Hochre-
iter and Schmidhuber 1997) can also be used to implement
Dy.

Compared to the scalar signal D(s), the feature vector f
is a much more informative guiding signal for G, since it
tells what the position of currently-generated words is in the
extracted feature space.

A Hierarchical Structure of G

In each step ¢ during the generation procedure, to utilize the
leaked information f; from Dy, we follow hierarchical RL
(Vezhnevets et al. 2017) to have a hierarchical architecture
of Gy. Specifically, we introduce a MANAGER module, an
LSTM that takes the extracted feature vector f; as its input
at each step ¢ and outputs a goal vector g;, which is then
fed into the WORKER module to guide the generation of the
next word in order to approach the higher reward region in
F(S;¢y). Next we will first describe the detailed generator
model in Leak GAN and then show how the MANAGER and
WORKER are trained with the guiding signals from D.

Generation Process. The MANAGER and WORKER mod-
ules both start from an all-zero hidden state, denoted as
h3! and A}V respectively. At each step, the MANAGER re-
ceives the leaked feature vector f; from the discriminator
D, which is further combined with current hidden state of
the MANAGER to produce the goal vector g; as

ghh’iu:M(ft?ht]\{l;em)v (2)
9t = Ge/19ell, 3)



where M(- ;6,,) denotes the MANAGER module imple-
mented by an LSTM with parameters 6,,, and h}/ is the re-
current hidden vector of the LSTM.

To incorporate goals produced by MANAGER, a linear
transformation 1) with weight matrix W), is performed on
a summation over recent ¢ goals to produce a k-dimensional
goal embedding vector w; as

wi=o(Yo) =W San) @
i=1 i=1

Given the goal embedding vector w;, the WORKER module
takes the current word x; as input and outputs a matrix Oy,
which is further combined with w; by matrix product to de-
termine the final action space distribution under current state
s¢ through a softmax

O, b = Wiae, h¥1:0u), 5)
Go(+|st) = softmax(O; - wi /), 6)

where W(- ;6,,) denotes the WORKER module, i.e. an
LSTM with h}"" as its recurrent hidden vector, O is a |V'| x k
matrix that represents the current vector for all words, thus
Oy - w, yields the calculated logits for all words, and « is the
temperature parameter to control the generation entropy.

Training of G

Notice that the above procedure is fully differentiable. One
can train G in an end-to-end manner using a policy gra-
dient algorithm such as REINFORCE (Williams 1992). In
LeakGAN, we would hope the MANAGER module to cap-
ture some meaningful patterns. Thus, we follow (Vezhnevets
et al. 2017) and train the MANAGER and WORKER modules
separately, where the MANAGER is trained to predict advan-
tageous directions in the discriminative feature space and the
WORKER is intrinsically rewarded to follow such directions.
Similar to (Vezhnevets et al. 2017), the gradient of the MAN-
AGER module is defined as

Vi g1 = ~Qu (51,900 Vo, deos (fire = fis90(0m)), (7

where Qr(s¢, g1) = Q(F(s¢),9¢) = Q(fe, 9) = E[r] is
the expected reward under the current policy which can be
approximately estimated via Monte Carlo search (Sutton et
al. 2000; Yu et al. 2017). dcos represents the cosine simi-
larity between the change of feature representation after c-
step transitions, i.e. f;y. — f:, and the goal vector g;(6,,)"
produced by MANAGER as in Eq. (2). Intuitively, the loss
function is to force the goal vector to match the transition in
the feature space while achieving high reward. At the same
time, the WORKER is trained to maximize the reward using
the REINFORCE algorithm (Williams 1992) as is done in
(Yu et al. 2017),

Vo, Bo i | 3 riW (@ilsio1:00)

:Est_le,xtNW(zﬂst_l) [QIVGW IOg W(xt |St71; ew)]a (8)

"We use g;(6.) to explicitly show g; is parameterized by 6,,.

which can be approximated by sampling the state s;_; and
the action z; taken by WORKER. As the WORKER is encour-
aged to follow the directions produced by the MANAGER,
following (Vezhnevets et al. 2017), the intrinsic reward for
the WORKER is defined as

r{ = % zj; deos (ft - ftfivgtfi)~ 9)

In practice, before the adversarial training, we need to pre-
train Gy. To be consistent, in the pre-train stage, we also use
the separate training scheme, where the gradient of MAN-
AGER is

VB g1 = Vo, deos (frve = fio0m)), (10)

where ft = F(4¢), §; and §; . are states of real text, and the
state-action value Q = (s¢, g¢) in Eq. (7) is set as | here since
the data instances used in pre-training are all real sentences.
As such, the MANAGER is trained to mimic the transition of
real text samples in the feature space. While the WORKER
is trained via maximum likelihood estimation (MLE).

In the training process, the generator Gy and discrimina-
tor Dy, are alternatively trained. In the generator, the MAN-
AGER M(- ; 6,,,) and WORKER W(- ; 6,,) (including 1) and
softmax) are alternatively trained while fixing the other. The
details of the training procedure are attached in the supple-
mentary material®.

Training Techniques

Bootstrapped Rescaled Activation. During the adversar-
ial training of SeqGAN (Yu et al. 2017), severe gradient van-
ishing occurs when D is much stronger than G, i.e. the re-
ward is too small value to update the parameters and thus
need be rescaled before being fed into G. Inspired by rank-
ing idea from RankGAN (Lin et al. 2017), we propose a
simple, time-efficient, rank-based method to rescale the re-
wards, named as bootstrapped rescaled activation. For a
mini-batch with B sequences, after the rollout of the gen-
erative model, the reward matrix is denoted as Rgy 7. For
each timestep ¢, we rescale the ¢-th column vector R! via

R =o(s- (05~ Lmk(l))), an
B

where rank(i) denotes the i-th element’s high-to-low rank-
ing in this column vector. ¢ is a hyperparameter that controls
the smoothness of the rescale activation. o () is an activation
function that re-projects the equidifferent scoring based on
ranking to a more effective distribution. In our experiment,
for example, the model adopts hyperparameter 6 = 12.0 and
the sigmoid function as o (+).

There are two main advantages of the bootstrapped
rescaled activation. First, after this transformation, the ex-
pectation and variance of the reward in each mini-batch are
constant. In this case, the rescale activation serves as a value
stabilizer that is helpful for algorithms that are sensitive in
numerical variance. Second, as all ranking methods do, it
prevents the gradient vanishing problem, which accelerates
the model convergence.

Zhttps://arxiv.org/abs/1709.08624



Interleaved Training. In traditional generative adversar-
ial models, mode collapse is a common problem. Here we
propose a training scheme called interleaved training to al-
leviate such a problem. As its name is, we adopt an interleav-
ing of supervised training (i.e. MLE) and adversarial train-
ing (i.e. GAN) instead of full GAN after the pre-training.
For example, we perform one epoch of supervised learning
for G after 15 epochs of adversarial training. An explanation
of why this scheme works is that blending these two train-
ings would help GAN get rid of some bad local minimums
and alleviate mode collapse. Another justification is that the
inserted supervised learning performs an implicit regulariza-
tion on the generative model to prevent it from going too far
away from the MLE solution.

Temperature Control. The Boltzmann temperature « in
Eq. (6) is a factor that could be used to balance the explo-
ration and exploitation for reinforcement learning problems.
Here we select a higher temperature when we are training
the model and a lower temperature when we adopt the model
to generate samples.

Experiment

The experiment consists of three parts: synthetic data experi-
ments, experiments in real-world scenarios and some expla-
nation study. The repeatable experiment code is published
for further research?.

Training Settings

Synthetic Oracle. For the synthetic data experiments,
simlar to (Yu et al. 2017), we first initialize the pa-
rameters of an LSTM following the normal distribution
N(0,1) as the oracle describing the real data distribution
Goracle (Tt|T1, ..., x4—1). We use it to generate 10,000 se-
quences of length 20 and 40 respectively as the training set
S for the generative models.

GAN Setting. For the discriminator, we choose the CNN
architecture (Zhang and LeCun 2015) as the feature extrac-
tor and the binary classifier. Note that one could design spe-
cific structure for different tasks to refine the CNN perfor-
mance. For the synthetic data experiment, the CNN kernel
size ranges from 1 to T'. The number of each kernel is be-
tween 100 and 200. In this case, the feature of textis a 1,720
dimensional vector. Dropout (Srivastava et al. 2014) with the
keep rate 0.75 and L2 regularization are performed to avoid
overfitting. For the generator, we adopt LSTM (Hochreiter
and Schmidhuber 1997) as the architectures of MANAGER
and WORKER to capture the sequence context information.
The MANAGER produces the 16-dimensional goal embed-
ding feature vector w; using the feature map extracted by
CNN. The goal duration time c is a hyperparameter set as 4
after some preliminary experiments.

Compared Models. For most parts of our experiment,
three baseline models are mainly compared with LeakGAN,
namely an MLE trained LSTM, SeqGAN (Yu et al. 2017)
and RankGAN (Zhang et al. 2017). We also compare model

3https://github.com/CR-Gjx/LeakGAN.
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Figure 2: The illustration of training curve.

Table 1: The over NLL performance on synthetic data.
Length | MLE | SeqGAN | RankGAN | LeakGAN | Real | p-value

20 | 9.038 | 8.736 8.247 7.038 | 5750 | <10°°

40 | 10411 | 10310 9.958 7191 | 4071 | <10°°

Table 2: BLEU scores performance on EMNLP2017 WMT.

Method | SeqGAN | RankGAN | LeakGAN | p-value
BLEU-2 0.8590 0.778 0.956 <10°°
BLEU-3 | 0.6015 0.478 0.819 <1078
BLEU-4 0.4541 0.411 0.627 <1076
BLEU-5 0.4498 0.463 0.498 <1076

variants, such as SeqGAN with bootstrapped rescaled acti-
vation, and include the real data to be referred as the perfor-
mance upperbound.

Evaluation Metrics. Negative log-likehood (NLL) is used
for synthetic data experiment since there is the oracle data
distribution available for evaluation. For real-world data ex-
periments, BLEU statistics (Papineni et al. 2002) and hu-
man rating scores in the Turing test are reported. We further
perform a t-test for the improvement of LeakGAN over the
second highest performance and report the p-value.

Synthetic Data Experiments

We run the synthetic data experiment with the text-length set
as 20 and 40 respectively.

The training curves are depicted in Figure 2 and the over-
all NLL performance is presented in Table 1. One could
have two observations from the results. (i) In the pre-training
stage, LeakGAN has already shown observable performance
superiority compared to other models, which indicates that
the proposed hierarchical architecture itself brings improve-
ment over the previous ones. (ii) In the adversarial training
stage, LeakGAN shows a better speed of convergence, and
the local minimum it explores is significantly better than pre-
vious results. The results demonstrate the effectiveness of
the information leakage framework and the hierarchical RL
architecture for generating both short and long texts.

Long Text Generation: EMNLP2017 WMT News

We choose the EMNLP2017 WMT* Dataset as the long text
corpus. Specifically, we pick the News section from the orig-
inal dataset. The news dataset consists of 646,459 words

“http://statmt.org/wmt17/translation-task.html



Table 3: BLEU scores on COCO Image Captions.

Method | SeqGAN | RankGAN | LeakGAN | p-value
BLEU-2 0.831 0.850 0.950 <107°
BLEU-3 0.642 0.672 0.880 <1076
BLEU-4 0.521 0.557 0.778 <1076
BLEU-5 0.427 0.544 0.686 <1076

Table 4: The BLEU performance on Chinese Poems.

Method | SeqGAN | RankGAN | LeakGAN
BLEU-2 0.738 0.812 0.881
p-value | < 107° <107° -

and 397,726 sentences. We preprocess the data by elimi-
nating the words with frequency lower than 4,050 as well
as the sentence containing these low frequency words. Be-
sides, to focus on long sentences, we remove the sentences
with length less than 20. After the preprocessing, the news
dataset has 5,742 words and 397,726 sentences. Then we
randomly sample 200,000 sentences as the training set and
another 10,000 sentences as the test set. We use the BLEU-(2
to 5) scores (Papineni et al. 2002) as the evaluation metrics.

The results are provided in Table 2. In all measured met-
rics, LeakGAN shows significant performance gain com-
pared to baseline models. The consistently higher BLEU
scores indicate that the generated sentences of LeakGAN are
of high quality in local features to mimic the real text.

Middle Text Generation: COCO Image Captions

Another real dataset we use is the COCO Image Captions
Dataset (Chen et al. 2015), a dataset which contains groups
of image-description pairs. We take the image captions as
the text to generate. Note that the COCO Dataset is not a
long text dataset, in which most sentences are of about 10
words. Thus we apply some preprocessing on the dataset.
The COCO Image Captions training dataset consists of
20,734 words and 417,126 sentences. We remove the words
with frequency lower than 10 as well as the sentence con-
taining them. After the preprocessing, the dataset includes
4,980 words. We randomly sample 80,000 sentences for the
training set, and another 5,000 for the test set.

The results BLEU scores are provided in Table 3. The re-
sults of the BLEU scores on the COCO dataset indicate that
LeakGAN performs significantly better than baseline mod-
els in mid-length text generation task.

Short Text Generation: Chinese Poems

To evaluate the performance of LeakGAN in short text
generation, we pick the dataset of Chinese poems which
is proposed by (Zhang and Lapata 2014) and most re-
lated work such as (Yu et al. 2017; Rajeswar et al. 2017;
Lin et al. 2017). The dataset consists of 4-line 5-character
poems. Following the above work, we use the BLEU-2
scores as the evaluating metrics.

The experimental results are provided in Table 4. The re-
sults on Chinese Poems indicate that LeakGAN successfully
handles the short text generation tasks.
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Figure 3: The illustration of BLEU improvement change
along with the generated text length on WMT News.

Table 5: Turing test results for in real-world experiments.
Dataset SeqGAN | LeakGAN | Ground Truth | p-value
WMT News 0.236 0.554 0.651 <107
COCO 0.405 0.574 0.675 <107°

Performance Robustness in Long Text Generation

Long text generation has always been difficult among all text
generation problems. The difficulty of the problem is due to
many factors, such as LSTM-RNN’s failure to capture long-
term dependency, discriminator’s failure to give those “good
but tiny” sequences appropriate penalty. To explicitly evalu-
ate the superiority of LeakGAN in long text generation, here
we use the relative performance gain of LeakGAN over Se-
qGAN (Yu et al. 2017) and RankGAN (Lin et al. 2017).

The results over EMNLP2017 WMT News data are
shown in Figure 3. The curves clearly show that LeakGAN
yields larger performance gain over the baselines when the
generated sentences are longer. This fact supports our claim
that LeakGAN is a robust framework for long text.

Turing Test and Generated Samples

Since BLEU score is a metric focusing on the local text
statistics, which may not be sufficient for evaluating text
generation quality, we also conduct a Turing test based on
questionnaires on the Internet. In the questionnaire, each
(machine generated or real) sentence gets +1 score when it
is regarded as a real one, and O score otherwise. We con-
duct the test with text generated by the models trained on
WMT News and COCO Image Captions. The average score
for each algorithm is calculated. In practice, we sample 20
sentences from every method and invite 62 people to partic-
ipate the test, where everyone should judge the quality of 30
sentences from the compared three methods and thus each
sentence is judged by 31 people. For the comparison fair-
ness, the sentences used in the questionnaires are randomly
sampled. Table 5 gives the results. The performance on two
datasets indicates that the generated sentences of LeakGAN
are of higher global consistency and better readability than
those of SeqGAN.

A few samples generated by LeakGAN are illustrated in
Table 6. More samples and their comparison with those from



Table 6: Samples from different methods on COCO Image Captions and EMNLP2017 WMT News.
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Figure 4: Feature traces during the generation (SeqGAN,

RankGAN and LeakGAN) and features of completed real
data (all compressed to 2-dim by PCA) on WMT News.

the baseline models are provided in the supplementary ma-
terial. These samples are collected for the Turing test ques-
tionnaires.

Model Explanation

Feature Trace. To verify that LeakGAN successfully ex-
ploits of the leaked message, we visualize the feature vector
fr extracted from the real data by discriminator. Besides, we
visualize the feature trace, i.e. the features f; of prefix s; dur-
ing the generation, for LeakGAN, SeqGAN and RankGAN
via a 2-D principal component analysis (PCA).

The visualized traces are plotted in Figure 4 and more
cases are presented in the supplementary material. As we
can see, during the generation process, in LeakGAN, the
feature vector gradually approaches the real data feature
vector region. However, previous models, i.e. SeqGAN and
RankGAN, fail to match the features even when the gener-
ation is completed. This indicates that the proposed Leak-
GAN does finish its design purpose of exploiting the leaked
information from Dy to better match the feature vector dis-
tributions of real data.

Behaviors of Worker and Manager. To give more details
of how WORKER and MANAGER interact with each other
and make use of the leaked information in the generative
model, we visualize the interaction vector of the WORKER
and MANAGER, i.e., the dimension-wise product of their
output (O, - wy as in Eq. (6)). Note that to simplify the ex-
planation, here we reduce the signal dimension from 16 to

Il
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Figure 5: Illustration of WORKER and MANAGER’s be-
haviors during a generation. (Dimension-wise Product of
Worker and Manager)

8. Figure 5 presents an example sentence and more cases are
provided in the supplementary material.

From Figure 5, we find some intuitive interpretations of
the implicit rules learned by the interaction of WORKER and
MANAGER. (i) The 5th dimension stands for current token’s
divergence from an entity token. If the 5th value is high, the
token would most possibly be a structural token, such as a
modal verb, an article or a preposition. (ii) The 6th dimen-
sion suggests how long the suffix from current step will be.
If a peak occurs in the curve, there must be some token that
triggers a long suffix. A frequently occurring example is the
formal subject. (iii) Although hard to observe, we do find
connections of the 7th dimension and the substructure of a
sentence. For example, when the start or the end of a sub-
sentence occurs, there is an observable fluctuation in the 7th
dimension. This indicates that the token is most likely to be
a punctuation or a conjuction.

Conclusion and Future work

In this paper, we proposed a new algorithmic framework
called LeakGAN for generating long text via adversarial
training. By leaking the feature extracted by the discrimi-
nator as the step-by-step guiding signal to guide the gen-
erator better generating long text, LeakGAN addresses the
non-informativeness and sparsity problems of the scalar re-
ward signal in previous GAN solutions. In the extensive ex-
periments with synthetic data and real world data including



long, mid-length and short text, LeakGAN achieved signif-
icant performance improvement over previous solutions, on
both BLEU scores and human ratings. Moreover, the anal-
ysis of the results shows that LeakGAN yields larger per-
formance gain when the longer sentences are generated. Fi-
nally, we also visualize and explain the efficacy of the guid-
ing signals that LeakGAN learns without any supervision.

For future work, we plan to apply LeakGAN in more natu-
ral language process applications like dialogue systems and
image captioning by providing more task-specific guiding
information. Also, enhancing the capacity of the discrimina-
tor to check the global consistency of the whole sentence is
a promising direction.
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Appendix

Formulas for Reference

Discriminator
f=F(s:95), (1)
Dy (s) = sigmoid(¢; - F(s; ¢r)) = sigmoid(¢y, f), 2)
MANAGER of Generator
ge- b = M(fe by 0m), ©)
9t = 9¢/19¢ )
we = w(ng) = Ww(zgm). )
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:Es,,_le,m,,NW(mt\st_l) [T{Vaw 10g W(xt|st71§ aw)}v (10)
1 c
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Pseudo Code

Algorithm 1 Adversarial Training with Leaked Information

Require: Hierachical policy Go,, g,,; discriminator Dy; a sequence dataset S = { X 1.7}
1: Initialize Gl,, 6,,, D¢ With random weights O, 0., ¢.
2: Pre-train Dy (i.e. the feature extractor F(-;¢¢) and the output layer sigmoid(¢y,-)) using S as positive samples and output from
Go,, 0., as negative samples.

3: Pre-train Go,, 0,, using leaked information from Dy
4: Perform the two parts of pre-training interleavingly until convergence.
5: repeat
6:  for g-steps do
7: Generate a sequence Yi.7 = (y1,...,yr) ~ Go
8 fortinl:7T do
9: Store leaked information f; from Dy
10: Get Q(f+, g+) by Monte Carlo Search via Eq. (8)
11: Get the computed direction g: from MANAGER
12: Update WORKER parameters 6., 1, softmax via Eq. (10)
13: Update MANAGER parameters 60, via Eq. (9)
14: end for
15:  end for
16:  for d-steps do
17: Use current G, 6, t0 generate negative examples and combine with given positive examples S
18: Train discriminator Dy for k epochs by Eq. (2)
19:  end for

20: until LeakGAN converges
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Figure 1: The feature extractor’s architecture (without the highway and dropout layer)

Experiment Settings
For synthetic data with length 20, the learning rate for MANAGER and WORKER is set to 0.001. The goal dimension size k is
set to 16. The embedding size of the LSTM-RNNS is set to 32. For the discriminative model, we set the hyperparameters of the

CNN as Table 1
For synthetic data with length 40, the learning rate for MANAGER and WORKER is set to 0.0005. The goal dimension size k

is set to 16. The embedding size of the LSTM-RNN:Ss is set to 32. For the discriminative model, we set the hyperparameters of
the CNN as Table 1

Table 1: Convolutional layer structures.

Sequence length (window size, kernel numbers)
(1, 100),(2, 200),(3, 200),(4, 200),(5, 200)
20 (6, 100),(7, 100),(8, 100),(9, 100),(10, 100)

(15, 160),(20, 160)
(1, 100),(2, 200),(3, 200),(4, 200),(5, 200)
40 (6, 100),(7, 100),(8, 100),(9, 100),(10, 100)
(16, 160),(20, 160),(30, 160),(40,160)

Discussions

The Necessity of the Hierarchical Architecture The hierarchical architecture in LeakGAN serves as the mechanism of
incorporating leaked information from D into G. However, in the body part, we haven’t shown whether the explotation of
hierachical architecture is a must. Actually, what we have to point out is, the explotation of hierarchical reinforment learning is
not a must, but a good choice in sequence decision scenarios.

We attempt to replace the hierarchical architecture by a fully connected layer. However, the model is so numerically sensitive
that we cannot operate a stable training on it the original training settings. A possible reason is that, since the feature space
of CNN changes rapidly during the training procedure, linear transformation without any normalization may not be able to
incorporate the information contained in the feature vector leaked from D.



Tlustration of WORKER and MANAGER’s Behaviors
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Figure 2: Illustration of WORKER and MANAGER’s behaviors during a generation. (Dimension-wise Product of Worker and
Manager)

Here we present more examples for illustrating the interaction of WORKER and MANAGER to support our claims in the main
text as below. Each curve shows a subscore of the token of that time step. Each dimension of the score, i.e. each subscore
measures a specific feature of the token in that context.

(1) The 5th dimension stands for current token’s divergence from an entity token. If the Sth value is high, the token would most
possibly be a structural token, such as a modal verb, an article or a preposition.

(i) The 6th dimension suggests how long the suffix from current step will be. If a peak occurs in the curve, there must be some
token that triggers a long suffix. A frequently occurring example is the formal subject.

(iii) Although hard to observe, we do find connections of the 7th dimension and the substructure of a sentence. For example,
when the start or end of a sub-sentence occurs, there is an observable fluctuation in the 7th dimension. This indicates that the
token is most likely to be a punctuation or a conjuction.



Tlustration of Feature Trace
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Figure 3: Feature traces (SeqGAN, RankGAN and LeakGAN) and features of real data (all compressed to 2-dim by PCA) on
WMT News.

As we can see, during the generation process, in LeakGAN, the feature vector gradually approaches the real data feature
vector region. However, previous models, i.e. SeqGAN and RankGAN, fail to match the features even when the generation is
completed. This indicates that the proposed LeakGAN does finish its designed purpose of exploiting the leaked information
from Dy to better match the feature vector distributions of real data.



Table 2: Appendix 1 - COCO Examples in the Questionaire

Sources | Example

Real data | A blue and white bathroom with butterfly themed wall tiles.
The vanity contains two sinks with a towel for each.

Several metal balls sit in the sand near a group of people.

A surfer, a woman, and a child walk on the beach.

A kitchen with a countertop that includes an Apple phone.

A closeup of a red fire hydrant including the chains.

People standing around many silver round balls on the ground.
A person on a bicycle is riding in front of a car.

A kitchen with a tile floor has cabinets with no doors, a dishwasher, a sink, and a refrigerator.
The top of a kitchen cabinet covered with brass pots and pans.
A woman is shaving her face while sitting on a wooden bench.
A stuffed animal is laying on the bed by a window.

A wooden toilet seat sits open in an empty bathroom.

A person is taking a photo of a cat in a car.

A phone lies on the counter in a modern kitchen.

silver balls laying on the ground around a smaller red ball.

A man riding a bicycle on a road carrying a surf board.

A man using his bicycle to go down a street.

A set table with silverware, glasses and a bottle of wine.

A large kite in the shape of the bottom half of a woman.

LeakGAN | A woman holding an umbrella while standing against a sidewalk.
A bathroom with a toilet and sink and mirror.

A train rides along the tracks in a train yard.

A man with a racket stands in front of a shop window.

A red and white photo of a train station.

The bathroom is clean and ready for us to use .

A man is walking with his dog on the boardwalk by the beach.

A man in a shirt and tie standing next to a woman.

A couple of luggage cart filled with bags on a shelf.

Large white and clean bathroom with white tile floors and white walls .
A group of people fly kites in the sky on a clear day.

A man wearing a suit and coat holds a tie through and wood pants.
Two men are working on a laptop in a room .

A man who is standing next to a brown and white horse.

A street sign with a red stop sign on the street pole.

A cat is laying on a keyboard and mouse in the air.

A man with a rainbow - colored shirt and a black dog.

A crowd of people standing around or standing on a sidewalk.

A man is sitting on his desk holding an umbrella.

SeqGAN | A woman is riding a bike on the street next to a bus.

A silver stove, the refrigerator, sitting in a kitchen.

A guy doing tricks on a skateboard while a man is standing on a cellphone.
A bunch of birds that are sitting in the sand.

A bathroom with tiled walls and a shower on it.

A couple of people are riding bikes down an asphalt road.

An old photo of a man riding on a motorcycle with some people.

A beautiful young girl in the bathroom has one has wine glasses and bottles above the counters.
A person in a helmet standing next to a red street.

An empty clean bathroom with a toilet and sink and tub.

A kid in a black shirt and dog arms in a restaurant kitchen.

A bathroom has a toilet, a sink and mirror.

Two bicycles are parked outside inside a small brown field.

The large rug is on the city under the city.

A bathroom that is has a picture above and a sink.

A small child jumping with glasses to a motor scooter.

A white bathroom with a toilet, television and bathtub and a sink.

A baby in a blue dress standing in front of a Frisbee.

A cat and a woman standing by two computer preparing food.

A pair of skis and pedestrians in a parking area near some different go.
Two bikes in a parking lot with a dog that has a back on her.




Table 3: Appendix 2 - News Examples in the Questionaire

Sources

Example

Real data

Out of those who came last year, 69 per cent were men, 18 per cent were children and just 13 per cent were women.
¢ Sometimes I think about leaving sex work, but because I am alone living costs are really expensive,” she said.

‘I was then stuck in the house for nearly two years only going out for short periods of time,” she said.

He has not played for Tottenham’s first team since and it is now nearly two years since he completed a full Premier
League match for the club.

This is a part of the population that is notorious for its lack of interest in actually showing up when the political
process takes place.

I was paid far too little to pick up a dead off of the ground and put it back in the box.

Local media reported the group were not looking to hurt anybody, but they would not rule out violence if police
tried to remove them.

The 55 to 43 vote was largely split down party lines and fell short of the 60 votes needed for the bill to advance.
We got to a bus station in the evening, but our connection didn’t leave until the following morning.

It’s actually something that I had to add, because I was getting really frustrated losing to my hitting partner all the
time.

Taiwan’s Defence Ministry said it was “aware of the information,” and declined further immediate comment,
Reuters reported.

Her response to the international refugee crisis gave a million refugees hope that they may be able to begin a new
life.

I’m racing against a guy who I lost a medal to - but am I ever going to get that medal back ?

LeakGAN

A man has been arrested at age 28 , a resident in Seattle , which was widely reported in 2007 .

I also think that * s a good place for us , I > m sure that this would be a good opportunity for me to get in touch .
What is the biggest problem for Clinton is that Donald Trump will be in the race and he ’ s unlikely to be the
nominee .

” We ’ re going to do and we ’ re going to put it out and get the ball ,” he said .

“I would be afraid to blame the girls to go back but I was just disappointed with the race,” he said.

“I’m not going to work together with a different role and we can win the game,” he added.

The couple’s lives are still missing and they have been killed in the city’s way to play against them, and because I
came out there.

For the last three years, we’ve got a lot of things that we need to do with this is based on the financial markets.
Don’t ask me, but I know, if I 11 be able to be out of Hillary Clinton, I think it’s being made for the Congress.

“I am proud to be able to move forward because we don’t have to look at about,” he said.

That * s why we ’ re the most important people for the African American community and we ’ ve made a good
response .

But the move will be only in a fight against them, as well as likely to prevent an agreement to remain in the EU.
The American Medical Association said that the militants had been arrested in connection with the murder of the
same incident.

The two - year - old girl has been charged with a suspect who was in the vehicle to the police station.

It is hard to buy on the Olympics, but we probably don’t see a lot of it.

“I’'m not going to be very proud of the other countries,” he said.

He said the U. N. intelligence industry will not comment on the ground, which would be sensitive to the European
Union.

I take my work in the days, but I would have to go down on Wednesday night.

SeqGAN

You only certainly might not rush it down for those circumstances where we are when they were the heads, and
when she’s name.

“T think you should really really leave for because we hadn’t been busy, where it goes to one,” he wrote.

All the study knew was that they are, so they continue to provide support service and it doesn’t exist.

¢ It can say become up with nothing sales have reached the charge for the other any evidence that been virtually
well below the $ 800.

Three times before the start of the season is much early on 2015 we are in the third training every year.

That’s the idea of strength that decision they said, we haven’t already lost four or seven, or Liverpool’s team.

That is not the time for the cost of changing the system and it was pushing for $ 20 million.

We had to take it a good day for a military, but nearly 6, 000 ] and prepare for them through.

I actually didn’t tell the background check the difference after my hour was to be recalled... and it was great.

We are thinking about 40, 000 and jobs in what is wrong in the coming and you know.

That is out how working you can’t set out some pretty tight... or what I’'m going through.

“1 wanted to be made you decided to have a crisis that way up and get some sort of weapon, not much to give birth
to for an American room.

She had been fined almost 200, 000 with couple of asylum seekers in Syria and Iraq.

Perhaps not, in looking for, housing officials would help the frustration of Government, with an FBI shortly before
2020.

Once we got to real show for the young man since I'm sure she went to love it just, whether to be late later last
year.

But, after a holiday period we might have to go on a total - out debate like that could have happened to us.




