
Markov Constraints for Generating Lyrics with Style

Gabriele Barbieri1,2 and François Pachet1 and Pierre Roy1 and Mirko Degli Esposti2

Abstract. We address the issue of generating texts in the style of an
existing author, that also satisfy structural constraints imposed by the
genre of the text. We focus on song lyrics, for which structural con-
straints are well-defined: rhyme and meter. Although Markov pro-
cesses are known to be suitable for representing style, they are diffi-
cult to control in order to satisfy non-local properties, such as struc-
tural constraints, that require long distance modeling. We show that
the framework of Constrained Markov Processes allows us to pre-
cisely generate texts that are consistent with a corpus, while being
controllable in terms of rhymes and meter, a result that no other tech-
nique, to our knowledge, could achieve to date. Controlled Markov
processes consist in reformulating Markov processes in the context
of constraint satisfaction. We describe how to represent stylistic and
structural properties in terms of constraints in this framework and
we provide an evaluation of our method by comparing it to both pure
Markov and pure constraint-based approaches. We show how this ap-
proach can be used for the semi-automatic generation of lyrics in the
style of a popular author that has the same structure as an existing
song.

1 INTRODUCTION

The style of a text is an important factor that determines its qual-
ity, its legibility and its identity. The idea of generating new texts in
the style of an existing author has been popular since the invention
of Markov processes, that have shown to capture, at least in a first
approximation, elements of the style of a corpus [8, 9]. Markov pro-
cesses represent faithfully local properties of sequences, at varying
orders, which makes them well-suited for such a task.

However, a text is not just a Markovian sequence, and, notwith-
standing the issue of meaning, it has been shown that texts also ex-
hibit statistical long-range correlations [1]. For instance, poems or
song lyrics often have rhymes or metric constraints, that are not al-
ways defined as local properties. They induce long-range dependen-
cies that violate the hypothesis of short-term memory of Markov
processes and demand long distance modeling. As a consequence,
most approaches in automatic generation of stylistically imitative
texts based on Markov models fail to capture higher-level proper-
ties of texts, which limit their use for practical applications, such as
machine translation [21] or automatic summarization [2].

The recently proposed framework of constrained Markov pro-
cesses (CMP), introduced in [14] and [15], addresses precisely the
issue of imposing constraints to a Markov process, to control it
without the need of other tools, such as, e.g., a second, high-order
Markov process. CMP is a technique to generate structured Markov
sequences by reformulating Markov Processes as constraint satisfac-
tion problems. We show in this paper that lyrics generation can be

1 Sony CSL Paris, France, {barbieri,pachet,roy}@csl.sony.fr
2 Università di Bologna, Italy, {gbarbieri,desposti}@unibo.it

formulated and solved in the CMP framework by expressing style
as a set of Markov constraints, and properties of grammaticality,
rhymes, meter and even to some extent, semantics, as constraints in
that framework. We evaluate our approach by asking humans to rate
texts generated by our technique against text generated using other
techniques.

In Section 2, we review previous approaches on poetry generation.
In Section 3, we describe constrained Markov processes. In Section
4, we show how structural constraints can be formulated as unary
constraints in CMP. Section 5 describes the evaluation. In Section
6, we give the details of a semi-automatic generation of lyrics in the
style of Bob Dylan that satisfy the structural constraints of an existing
song (Yesterday, by The Beatles).

2 RELATED WORKS

Many Natural Language Generation systems have been proposed
to generate technical texts in a given style. For example, Skillsum
[18] generates feedback reports about people’s literacy and numer-
acy skills. In Skillsum, the style is governed by rules based on a
manual analysis of the corpus to imitate. Iconoclast [16] generates
patient information leaflets. The style is parameterized by low-level
parameters, such as paragraph length or the use of specific technical
terms. However these system do not handle the structural constraints
specific to poetry (rhymes, meter).

On the other hand, poetry generation systems generate well-
formed texts in terms of meter and rhyme but they usually do not
address the stylistic dimension. McGonagall [17] uses genetic algo-
rithms to generate texts that are syntactically correct, following im-
posed meter patterns and which broadly convey a given meaning.
The WASP system [5] and its evolution ASPERA [6] produce Span-
ish poetry from several input data, such as the choice of vocabulary
and a poem type. In the field of lyrics generation, Tra-la-lyrics [13]
automatically generates percussive lyrics to accompany a given piece
of music. Titular [20] automatically generates novel song titles to in-
spire songwriter in lyrics production. None of these systems address
explicitly the problem of style.

To our knowledge, the only systems that generates literary texts
with style are the poetry generator proposed in [7] and RKCP (Ray
Kurzweil’s Cybernetic Poet) [9]. In [7], the style is modeled as a
”blending principles choice”. Although the authors claim that an ex-
isting style can be approximated by carefully tuning these blending
principles, they do not explain how to do it in practice. RKCP is the
closest system that looks at solving the same problem that we have,
and uses Markov processes trained on a corpus of given authors to
generate poems in the same style. The generation is controlled by pa-
rameters such as the type of stanza and rhymes. However, RKCP uses
a generate-and-test approach to validate the verses generated by the
Markov processes. This approach is both incomplete and unbounded

ECAI 2012
Luc De Raedt et al. (Eds.)
© 2012 The Author(s).
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-098-7-115

115



in terms of execution time.
In this paper, we present a technique that, given a corpus, ensures

real time generation of verses that satisfy structural constraints. We
first describe the technique and, in Section 4, we show how it can be
used.

3 FINITE-LENGTH MARKOV PROCESSES
WITH CONSTRAINTS

A Markov process is a random process with a short-term memory: it
generates states with a probability that depends only on a fixed, finite
number of past states. The number of past states used to define the
distribution of future states defines the order of the Markov process.
A Markov process M of order n can be estimated from a corpus
using Maximum Likelihood Estimation (MLE), by computing the
relative frequencies (RF ) of each n-gram, i.e., continuous sequence
of n words that appear in the corpus. More sophisticated techniques,
such as smoothing techniques [8], can be used, to deal with the zero-
frequency problem caused by the sparsity of the RF estimate. We
decided to use MLE, because it gives an acceptable estimate of the
corpus used in this paper. However our approach is independent of
the way the process M is estimated, and is therefore compatible with
any of these techniques.

A Markov process can be used to generate new word sequences
with a random walk procedure consisting of drawing random states
according to the word transition probabilities. Each word wi is gen-
erated with probability PM (wi|wi−n, . . . , wi−1) depending only on
the n − 1 words previously generated. For instance, the order-1
Markov model of the following corpus:

• Clay loves Mary
• Mary loves Clay
• Clay loves Mary today
• Mary loves Paul today

is represented in Figure 1. A random walk could produce sequences
such as “loves Mary loves Clay loves”, or “Paul today”.

���� ����	

���

�������

����
���

���� �����

����




Figure 1. An order-1 Markov process learned from a corpus composed of
five words.

Markov processes do not provide any control on the structure of
the generated sequences. For instance, a constraint that imposes the
last word of a 4-word sequence to be “today” and a constraint that
imposes to the first word to rhyme with “today” create a long distance
dependency between the first and the last word of the sequence. In-
deed the only four-word sequences that satisfy these constraints are
“Clay loves Mary today” and “Clay loves Paul today”. Therefore, the
first word of the sequence must be “Clay”, excluding “Mary”, “Paul”,
“loves” and “today” as possible first states. This implicit dependency
cannot be represented in the initial Markov model. Obviously, the

model generates texts that do not necessarily rhyme. Generate-and-
test can be used to filter out incorrect sequences, but without any
guarantee that correct sequences will be generated.

The framework of Constrained Markov Processes allows precisely
to solve this issue, i.e., to generate Markov sequences that satisfy ex-
plicit control constraints, such as the rhyme constraint in the previous
example.

Following [14], the Markov process is reformulated as a constraint
satisfaction problem P . The sequence to generate is represented as
the sequence of finite-domain constrained variables of P . The tran-
sition probabilities are represented as Markov constraints holding on
these variables. Control constraints are represented as arbitrary con-
straints. The same authors showed, in [15], that if the control con-
straints are unary (i.e., they hold on a single variable) , the initial
Markov process M can be transformed in a constrained Markov pro-
cess M̃ with the following properties:

1. M̃ generates exactly the verses that satisfy the control constraints
and,

2. the admissible verses are generated with the same probabilities in
M and M̃ up to a constant factor.

M̃ is obtained in two steps. The first step makes the constraint sat-
isfaction problem P arc-consistent [10]: for each variable, the values
that violate at least one constraint are removed, until a fixed-point is
reached. An intermediary Markov process is built from M and P by
zeroing state transitions that are filtered out by the arc-consistency
procedure, i.e., the transitions that correspond to the removed val-
ues. This step guarantees that only correct sequences are generated
(Property 1. above). The first step affects the transition probabilities,
therefore, a second step is applied that adjusts the local transition
probabilities to get the initial global probability distribution of M
(Property 2.). M̃ is the resulting process. For more details about the
construction of M̃ and the proof that the obtained model satisfies 1.
and 2., see [15].

Coming back to the previous example, the Markov process Mex is
transformed in the process M̃ex in Figure 2.

Figure 2. A constrained Markov process M̃ex that generates verses
composed of 4 words and rhymes with the word yesterday. M̃ex and Mex

have the same probability distribution. M1, M2 and M3 represent the
Markov constraints, C1 represents the control constraint “rhyme with

today”, C4 represents the control constraint “be today”. The arrow labels
indicate the transition probabilities.

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style116



4 UNARY CONSTRAINTS FOR LYRICS
GENERATION

In this section, we challenge the problem of representing most of
the structural aspects of poetic texts [17]: rhyme, meter, syntactic
correctness, as well as semantic relatedness, as unary constraints in
the framework of CMP.

4.1 Meter and Rhyme

We implement rhyme and meter respectively by rhyme constraints
and rhythmic templates. These constraints are hard constraints: they
ensure that the generated verses fully respect an imposed meter and
an imposed rhyme structure.

4.1.1 Rhyme Constraints

Rhymes are naturally represented as unary constraints on the ending
words of verses. Given a target word s, a rhyme constraint is satis-
fied by all the words in the corpus that rhyme with s, according to
its phonetic spelling. In this paper, we chose the CMU pronuncia-
tion dictionary [19] to extract the phonetic spelling of words. Vowels
are tagged with their lexical stress (0 for non stressed vowels, 1 for
stressed vowels). For example the spelling of the word “today” is [T,
AH0, D, EY1]. In our system two words are said to rhyme if the
suffixes of their spellings from the last stressed vowels are the same.
For example “today” ([T, AH0, D, EY1]) rhymes with “pray” ([P, R,
EY1]).

4.1.2 Rhythmic Templates

Meter is the position of the stressed syllables in a verse. Using the the
CMU dictionary, each word is labeled with a rhythmic tag, defined
by the sequence of the lexical stresses. For instance, the rhythmic tag
of “today” [T, AH0, D, EY1] is 01. The meter of a verse is composed
by the rhythmic tags of its words, e.g., the meter of “Innocence of a
story I could leave today” is [101, 1, 1, 10, 1, 1, 1, 01]. Meter can
be imposed on a verse by a sequence of unary constraints, called a
rhythmic template. Each unary constraint imposes a rhythmic tag on
a word.

A corpus (for instance the lyrics of Bob Dylan) provides a collec-
tion of rhythmic templates induced by the meter of each verse.

4.2 Syntax and Semantics

A poetic text is of course not simply a concatenation of words that
satisfy some formal requirements, but must be syntactically well-
formed and convey some meaningful message. We show that unary
constraints are, again, well-adapted to ensure, at least partially, syn-
tactical correctness. Although we do not contribute here to the gen-
eral issue of representing meaning, we show that unary constraints
can impose, to some extent, a semantic bias to the generated verse.
Following [5] and [12], we use part-of-speech templates to ensure
syntactical correctness and semantic constraints to approach the
problem of meaning. These constraints do not ensure that the gener-
ated verses are always syntactically correct and clearly communicate
a message. So these constraints define the two questions we will ask
in Section 5.

4.2.1 Part-of-Speech Templates

Syntactic correctness is enforced by the combination of Markov
probabilities and a template-based approach [4]. A part-of-speech
template is a sequence of part-of-speech (POS), such as Verb, Noun,
etc. In this experiment, the corpus is tagged using the Stanford Log-
Linear part-of-speech tagger [22], tagging each word with one or
more POSs (for instance the word “run” is tagged with the POSs
Noun and Verb). A part-of-speech template is represented as a se-
quence of unary constraints. For example the template [PRP, VBD,
IN, PRP, RB] (Personal pronoun, Verb past tense, Preposition, Ad-
verb) is satisfied by the verse “she knocked upon it anyway”.

Similarly to rhythmic templates, a corpus induces a collection of
POS templates. However, according to [20], we only retain the tem-
plates that appear in at least two verses in the corpus, to reject in-
correct templates that may occur due to errors in the POS tagging
procedure.

4.2.2 Semantic Constraints

The dimension of meaning is, of course, the most difficult compu-
tational task to achieve in general. We show that our framework is
well-adapted to enforce a semantic relatedness between a target con-
cept and the generated verse. This is done by imposing semantic con-
straints on the word on which the semantic bias has to be enforced.
For any word w in the corpus, the semantic constraint is satisfied by
the n words in the corpus most related to w. We use the Wikipedia
Link-Based Measure [11], to compute semantic relatedness. We de-
cide for this measure because it is an effective compromise between
ease of computation and accuracy. Note here that a more flexible
technique could be to use cardinality constraints, holding on all the
words of the verse. This solution does not fit with the CMP approach,
which considers only unary constraints, but is envisaged as future
work.

5 EVALUATION

This section is an evaluation of our technique, to investigate to what
extent the constraints proposed in Section 4.2 ensure that the gen-
erated texts are syntactically correct and semantically related to the
concepts imposed by the user.

Firstly, we compare our technique (hereafter CM) against a pure
Markov approach (PM) that generates texts using only the initial
Markov model without control constraints, to evaluate how much the
constraints increase the syntactic correctness and semantic related-
ness.

Secondly, we compare our technique against a pure constraint
solving approach (PC) that generates texts using only the control
constraints, because this approach is similar to the approaches in [5],
[6], [12] and [20]. We cannot compare directly these techniques be-
cause they differ in many ways from CM (for instance the choice
of the language, the dictionary and the semantic relatedness measure
used) and these parameters affect the quality of the generated texts,
as pointed out in [5]. Therefore we use the same constraints in PC
and CM to ensure a fair evaluation.

Automatic evaluations of both syntactic correctness and semantic
relatedness are still open problems (see respectively [3] and [23]) and
to our knowledge there is no reliable method to automatically evalu-
ate these properties. An automatic evaluation of semantic relatedness
is presented in [17], but this evaluation requires an optimal solution

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style 117



to the problem (for example a human-generated text). We cannot ex-
ploit the proposed evaluation because we are interested in generating
novel material instead of rewriting existing lyrics.

We propose an empirical evaluation, by asking humans to rate syn-
tactic correctness and semantic relatedness of texts generated by CM,
PM and PC.

5.1 Generation of the Test Poems

For each technique, we generate 16 poems, to make a total of 48
poems. Each of the 16 poems is entitled with a one-word title, that
defines the concept to which the poem should be related, and four
verses. We manually select the 16 titles (listed in Table 1). The rhyme
structure is ABAB.

Table 1. The 16 titles of the poems. Each title is used for three poems,
generated using the three different techniques (CM , PM and PC). A title

imposes a topic to the corresponding poems.

television religion politics sky
jealousy envy joy laugh
love moon sun music
paradise hell peace war

We train an order-2 Markov process MDylan on a corpus com-
posed of 12408 verses by Bob Dylan, hereafter referred to as the
Dylan corpus. We chose Bob Dylan because he is a fine and prolific
songwriter, with a personal and consistent style. The Markov model
made up from the complete set of his lyrics (see Table 2) is not too
sparse while of a reasonable size.

Table 2. Statistics of the Dylan corpus.

Number of verses 12 408
Total number of words 96 089
Number of different words 7 600

For each of the 16 poems, we define a set of control constraints
as follows. The Dylan corpus provides a collection of rhythmic tem-
plates and a collection of POS templates as explained in Section 4.
For each verse, a rhythm template and a POS template of the same
length are randomly selected. In each verse, one position is randomly
chosen among the open tags (i.e., adjectives, nouns, adverbs, and
verbs) of the POS template. We impose the corresponding word to be
semantically related to the title word. We specify rhyme constraints
to ensure that the first (respectively second) and third (resp. fourth)
verses rhyme with the word wA (resp. wB). wA and wB are ran-
domly chosen from the set of words that rhyme with at least 10 other
words of the corpus.

The CM approach generates the 16 poems with a constrained
Markov process combining MDylan with the control constraints.
The PC approach generates the poems by drawing each verse ran-
domly in the space of the verses that satisfy the control constraints.
The PM approach generates the poems with a naive random walk on
MDylan. The length of each verse is randomly chosen between 5 and
8 words. For each approach, we generate automatically poems such
as the ones shown in Table 3.

5.2 Empirical Evaluation

Following [5], we asked a team of 12 volunteers to rate syntactic
correctness and semantic relatedness of each poem. The evaluators

Figure 3. Box plots illustrating the distribution of “syntactic correctness”
and “semantic relatedness” ratings assigned by evaluators to CM, PM and

PC outputs. Boxes represent the interquartile ranges, with the medians
indicated by thick black lines. Whiskers on either side span the minimum

and maximum values of each distribution.

were instructed to rate syntactic correctness according to the fol-
lowing scale: 1) the poem is strongly grammatically incorrect, 2)
the poem presents some grammatical errors, 3) the poem is almost
or completely grammatically correct. The evaluators were instructed
to rate semantic relatedness according to the following scale: 1) the
poem is semantically unrelated to the title, 2) the poem is weakly
semantically related to the title, 3) the poem is strongly semantically
related to the title.

The results of these evaluations are shown in Figure 3.

5.3 Discussion

Results clearly show that the CM technique performs better regarding
syntactic correctness and semantic relatedness. The results are sta-
tistically significant for both experiments (Mann-Whitney test with
p < 0.05, multiple tests are corrected using the Bonferroni method).
Surprisingly, PC is the lowest-preforming technique with respect to
syntactic correctness, whereas the results performed by PM and CM
are more similar. This may be due to the fact that the POS tags we
use are not detailed enough. This is clear when observing the second
verse of the poem in the examples shown in Table 3. In this verse
there is a clear mistake: “you wakes”. This mistake is because the
tag PRP (personal pronoun) does not contain any information about
the person. Of course, a better POS tagging will improve the gram-
maticality rating of PC, however CM will also benefit from such as
an improvement. It is interesting to observe that mistakes like “you
wakes” are prevented by the use of a Markov model. Therefore the
interaction between the information carried by the Markov model
and the POS templates explains the high grammatical score of CM.

As expected, PM generates semantically unrelated poems, because
no information about semantics is provided to the generator. The fact
that the average semantic relatedness is not exactly 1 is due to the
presence, by chance, of words related to the desired concept, such as,
in the PM example in Table 3, the word “heard”, related to concept of
“music”. The fact that the meaningfulness rating of CM is better than
the rating of PM is again probably due to the information carried by
the Markov model.

6 AN EXAMPLE: LYRICS IN THE STYLE OF
BOB DYLAN

This section describes an application of our technique to the semi-
automatic generation of lyrics in the style of Bob Dylan with an
imposed structure. One example is shown in Table 4. Many exam-
ples in the style of more than 60 popular authors can be found at
http://www.csl.sony.fr/MarkovCt/lyrics/.

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style118



Table 3. Examples of poems used in the evaluation. The first poem is generated using constrained Markov processes (CM). The second poem is generated
using a pure constraint solving approach (PC). The third poem is generated using a pure Markov process approach (PM). Each poem is intended to be related

to the concept “Music”. Note that, unlike CM and PC, the PM poem do not satisfy the structural constraints, such as the rhyme

MUSIC (CM) MUSIC (PC) MUSIC (PM)
There is a note in his eyes Its pine this notes from all tries Swimmy from the cold eyes of Judas on

He backs the beat of the key You wakes no band like all three Handful of rain tempting you to be heard
Down the song in my eyes So half beat worth whose ties Therefore i remain at my window wishing

You back the beat of the sea That leaves those beats of this flea Nighttime is the one said

Table 4. The lyrics of the song Today, generated using constrained Markov processes. The style of the lyrics is clearly Dylanesque (see e.g. the 8th verse
“Wind is blowing in the light in your alleyway”, made up from words of the hits “Blowing in the wind” and “Subterranean homesick blues”, that Dylan fans
would easily recognize) . Each verse follows the rhythm and the rhyme structure defined by the Beatles’ song “Yesterday”. The words on which a semantic

constraint is imposed are in italic. The corresponding constraints are listed on the right column of the table.

Today (lyrics generated using the constrained Markov approach) Semantic constraints

Innocence of a story I could leave today today imposed
When I go down in my hands and pray
She knocked upon it anyway
Paradise in the dark side of love it is a sin paradise imposed by the semantic constraint related to “pray”
And I am getting weary looking in
Their promises of paradise paradise is imposed
Now I want to know you would be spared this day
Wind is blowing in the light in your alleyway
Innocence in the wind it whispers to the day innocence is imposed
Out the door but I could leave today door imposed by the semantic constraint related to “knocked”
She knocked upon it anyway equal to the 3rd verse, as in the original song.

We impose the same rhyme and meter structure as that of the song
“Yesterday” by the Beatles. In other words, we want to map Bob Dy-
lan’s songwriting style onto the structure of “Yesterday”, very much
like one can map a texture onto an existing shape.

The generation process is semi-automatic. Although a fully au-
tomatic generation process is possible (as shown in section 5), the
interaction with a human user improves the global coherence of the
lyrics. The verses are generated one by one, prompting the user at
each step to select one verse out of five different candidates.

The initial Markov process is MDylan, as described in Section 5.1.
The constraints imposed on the song to enforce rhyme are as follows.
Initially, no constraint is set. The rhyme structure of Yesterday is
AAABBCAAAAA, as shown in table 5. This implies that after the
first verse v1 is selected by the user, all the verses tagged A (verses
v2, v3, and v7 to v11) will be generated with a unary constraint that
forces them to rhyme with v1. Similarly, the verse v4 is generated
with no rhyme constraint, but the verse v5 will be constrained to
rhyme with v4.

The rhythm constraints are enforced by rhythmic templates de-
fined as explained in Section 4.1.2, and according to the rhythmic
structure of “Yesterday” (see table 5 for the complete structure).

For each verse, a POS template is drawn randomly from the POS
templates induced by the corpus that have the length than the corre-
sponding verse in Yesterday. For instance, the POS templates for the
first verse are those templates with eight words.

The song is entitled intentionally “Today”, a word that has the
same meter as “away”, the last word of the first Yesterday’s verse.
Accordingly, we impose the word “today” as the last word of the first
verse. As a consequence, verses v2, v3, and v7 to v11 are constrained
to rhyme with “today”. Note that, after imposing “today” at the end
of the first verse, the candidate POS templates are those that: have

eight words; appear at least twice in the corpus; are compatible with
“today”, i.e., end with NN. An example is [NN, IN, DT, NN, PRP,
MD, VB, NN], the one actually chosen.

These constraints control a constrained Markov process that gen-
erates the candidates for the first verse. Figure 4 shows the verses
proposed. We select “Innocence of a story I could leave today”.

Figure 4. Five verses proposed by the constrained Markov process for the
first verse of the song. Each of them satisfies the control constraints:

rhythmic template [100, 1, 1, 10, 1, 1, 1, 01]; POS template [NN, IN, DT,
NN, PRP, MD, VB, NN]; “today” imposed as the last word.

The complete generation process of the song is the following.

v1: “today” is imposed as being the last word. The rhythm template is
that of “Yesterday, all my troubles seem so far away”, i.e., [101,
1, 1, 10, 1, 1, 1, 01].

v2: Yesterday’s rhythmic templates, namely [1, 1, 1, 1, 1, 1, 1, 1, 1];
rhyme with “today”.

v3: Rhythm [1, 1, 01, 1, 101]; rhyme with “today”.
v4: Rhythm [100, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Semantic constrain related

to “pray” on the first word. Free rhyme.
v5: Rhythm [1, 1, 1, 10, 10, 10, 1]. Rhyme with “sin”.
v6: Rhythm [1, 101, 1, 100]. “Paradise” imposed as being the last

word.

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style 119



Table 5. The lyrics of the song Yesterday by The Beatles. Each verse is associated to its automatically extracted rhythmic template. The last column of the
table shows the rhyme structure.

Yesterday Rhythmic templates Rhyme structure

Yesterday all my troubles seemed so far away 101, 1, 1, 10, 1, 1, 1, 01 A
Now it looks as though they are to stay 1, 1, 1, 1, 1, 1, 1, 1, 1 A
Oh I believe in yesterday 1, 1, 01, 1, 101 A
Suddenly I’m not half to man I used to be 100, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 B
There’s a shadow hanging over me 1, 1, 1, 10, 10, 10, 1 B
Oh yesterday came suddenly 1, 101, 1, 100 C
Why she had to go I don’t know she wouldn’t say 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 A
I said something wrong now I long for yesterday 1, 1, 10, 1, 1, 1, 1, 1, 101 A
Yesterday love was such an easy game to play 101, 1, 1, 1, 1, 10, 1, 1, 1 A
Now I need a place to hide away 1, 1, 1, 1, 1, 1, 1, 01 A
Oh I believe in yesterday 1, 1, 01, 1, 101 A

v7: Rhythm [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Rhyme with “today”.
v8: Rhythm [1, 1, 10, 1, 1, 1, 1, 1, 101]. Rhyme with “today”.
v9: Rhythm [101, 1, 1, 1, 1, 10, 1, 1, 1]. “Innocence” imposed as being

the first word. Rhyme with “today”.
v10: Rhythm [1, 1, 1, 1, 1, 1, 1, 01]. Semantic constraint related to

“knock” on the third word. Rhyme with “today”.
v11: As in the original song this verse is equal to the third verse, there-

fore it is not generated by a constrained Markov process, but is
simply a copy.

7 CONCLUSION

Structural properties of texts demand long distance modeling which
Markov processes at the word level do not cope with. We have
demonstrated that constrained Markov processes can be used to gen-
erate texts that imitate a given style while satisfying structural proper-
ties. We formulate the properties of syntactic correctness, rhymes and
meter as unary control constraints. We show that this same frame-
work enables the verses to be semantically biased towards a given
semantic constraint. By construction, each verse generated by a con-
strained Markov process fulfills the property of rhyme and meter. We
empirically evaluated syntactic correctness and semantic relatedness
by asking humans to evaluate texts generated by our approach against
texts generated by two other approaches. This evaluation shows that
constrained Markov processes generates better texts in terms of syn-
tactic correctness and semantic relatedness. Finally we showed how
this approach can be used to create the lyrics of a song that is both
stylistically coherent while satisfying structural constraints.

We want to improve the approach to a deeper control on the texts
we generate, by extending the palette of constraints to non-unary
constraints. For instance, semantic biases could be improved by al-
lowing cardinality constraints on a whole verse or stanza, instead of
unary constraints on chosen words. Form could be constrained by
using other constraints such as the number of characters (sum), or
constraints holding on paragraphs.

REFERENCES

[1] E. Alvarez-Lacalle, B. Dorow B, J.P. Eckmann, and E. Moses, ‘Hier-
archical structures induce long-range dynamical correlations in written
texts’, Proc. Nat. Acad. Sci. USA, 103, 7956–7961, (2006).

[2] R. Barzilay, ‘Probabilistic approaches for modeling text structure and
their application to text-to-text generation’, in Empirical methods in
natural language generation, pp. 1–12. Springer-Verlag, (2010).

[3] A. Budanitsky and G. Hirst, ‘Evaluating wordnet-based measures of
lexical semantic relatedness’, Comput. Linguist., 32(1), 13–47, (2006).

[4] K. Deemter, M. Theune, and E. Krahmer, ‘Real versus template-based
natural language generation: A false opposition?’, Computational Lin-
guistics, 31(1), 15–24, (March 2005).

[5] P. Gervás, ‘Wasp: Evaluation of different strategies for the automatic
generation of spanish verse’, in Time for AI and Society, pp. 93–100,
(2000).

[6] P. Gervás, ‘An expert system for the composition of formal spanish po-
etry’, Journal of Knowledge-Based Systems, 14(3-4), 181–188, (2001).

[7] J. A. Goguen and D. Fox Harrell, ‘Style as a choice of blending prin-
ciples’, in Style and Meaning in Language, Art Music and Design, pp.
49–56. AAAI Press, (2004).

[8] D. Jurafsky and J. H. Martin, Speech and Language Processing, Pren-
tice Hall, 2009.

[9] R. Kurzweil. Cybernetic poet. http://www.kurzweilcyberart.com, 2001.
[10] A. K. Mackworth, ‘Consistency in networks of relations’, Artificial In-

telligence, 8, 99–118, (1977).
[11] D. Milne and I. H. Witten, ‘An effective, low-cost measure of seman-

tic relatedness obtained from wikipedia links’, in Proceedings of AAAI
2008, (2008).

[12] Y. Netzer, D. Gabay, Y. Goldberg, and M. Elhadad, ‘Gaiku: Generat-
ing haiku with word associations norms’, in Proc. of the Workshop on
Computational Approaches to Linguistic Creativity (CALC), pp. 32–39.
ACL Press, (2009).

[13] H. R. Gonçalo Oliveira, F. Amlcar Cardoso, and F. C. Pereira, ‘Tra-
la-lyrics: an approach to generate text based on rhythm’, in Proc. of the
4th. International Joint Workshop on Computational Creativity, (2007).

[14] F. Pachet and P. Roy, ‘Markov constraints: steerable generation of
Markov sequences’, Constraints, 16(2), 148–172, (2011).

[15] F. Pachet, P. Roy, and G. Barbieri, ‘Finite-length Markov processes with
constraints’, in Proc. of IJCAI 2011, pp. 635–642, Spain, (2011).

[16] R. Power, D. Scott, and N. Bouayad-Agha, ‘Generating texts with
style’, in Proc. of the 4th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing03), pp. 444–452,
Mexico, (2003).

[17] F. Rahman and H. M. Manurung, ‘Multiobjective optimization for
meaningful metrical poetry’, in Proc. of ICCC-11, pp. 4–9, Mexico,
(2011).

[18] E. Reiter and S. Williams, ‘Generating texts in different styles’, in The
Structure of Style: Algorithmic Approaches to Manner and Meaning,
pp. 59–75. Springer-Verlag, (2010).

[19] A. Rudnicky. The Carnegie Mellon pronouncing dictionary, version
0.7a. http://www.speech.cs.cmu.edu/cgi-bin/cmudict, 2010.

[20] B. Settles, ‘Computational creativity tools for songwriters’, in Proc. of
the NAACL-HLT Workshop on Computational Approaches to Linguistic
Creativity, pp. 49–57. ACL Press, (2011).

[21] H. Somers, ‘Review article: Example-based machine translation’, Ma-
chine Translation, 14, 113–157, (1999).

[22] K. Toutanova, D. Klein, C. Manning, and Y. Singer, ‘Feature-rich part-
of-speech tagging with a cyclic dependency network’, in Proc.of HLT-
NAACL 2003, pp. 252–259, (2003).

[23] J. Wagner, J. Foster, and J. van Genabith, ‘Judging grammaticality: Ex-
periments in sentence classification’, CALICO Journal. Special Issue
on the 2008 Automatic Analysis of Learner Language, (2009).

G. Barbieri et al. / Markov Constraints for Generating Lyrics with Style120


