Bagging

Bagging is a simple technique generally useful to:

- reduce the impact of the order of instances on learning algorithms whose output models are order-dependent, and/or
- reduce the probability of misclassification based on any single induced model

Let L be the chosen learning algorithm, N be a user-defined parameter specifying the number of samples/bags, and d the size of each bag.

Algorithm Bagging($Instance_set$, L, N, d)

For $k \leftarrow 1$ to N

$S_k \leftarrow$ random sample of size d drawn from $Instance_set$

$M_k \leftarrow$ the model induced by L from S_k

For each new query instance q

$Class(q) = \arg\max_{v \in V} \sum_{i=1}^{k} \delta(v, M_i(q))$

where V is the finite set of target class values, and $\delta(a, b) = 1$ if $a = b$ and $\delta(a, b) = 0$ otherwise.

Note the similarity between bagging and N-fold cross-validation.
Boosting

Boosting is based on the observation that finding many rough rules of thumb (i.e., weak learning) can be a lot easier than finding a single, highly accurate prediction rule (i.e., strong learning).

Boosting assumes that weak learners can be made strong by repeatedly running a given weak learner on various distributions over the training data (i.e., varying the focus of the learner), and then combining the weak classifiers into a single composite classifier.

As with bagging, boosting generates a hypothesis whose error on the training set is small by combining many hypotheses whose error may be large (but still better than random guessing - see the test on ϵ_t in the AdaBoost.M1 algorithm).

However, unlike bagging, boosting tries actively to force the weak learning algorithm to change its hypothesis by changing the distribution over the training instances as a function of the errors made by previously generated hypotheses.
AdaBoost.M1

Let \(L \) be the chosen “weak” learning algorithm and \(T \) be the number of iterations to perform.

Algorithm AdaBoost.M1(\(\text{Instance_set}, L \))

For \(i \leftarrow 1 \) to \(|\text{Instance_set}| \)

\[
D_1(i) \leftarrow \frac{1}{|\text{Instance_set}|}
\]

For \(t = 1 \) to \(T \)

\(h_t \leftarrow \) the model induced by \(L \) from \(\text{Instance_set} \) with distribution \(D_t \)

\(\epsilon_t \leftarrow \sum_{i:h_t(x_i)\neq y_i} D_t(i) \)

If \(\epsilon_t > .5 \)

\(T \leftarrow t - 1 \)

Abort loop

\(\beta_t \leftarrow \frac{\epsilon_t}{1-\epsilon_t} \)

For \(i \leftarrow 1 \) to \(|\text{Instance_set}| \)

\[
D_{t+1}(i) \leftarrow \frac{D_t(i)}{Z_t} \times \begin{cases}
\beta_t & \text{if } h_t(x_i) = y_i \\
1 & \text{otherwise}
\end{cases}
\]

where \(Z_t \) is a normalisation constant, chosen so that \(D_{t+1} \) will be a distribution

\(h_{final}(x) \leftarrow \arg\max_{y \in Y} \sum_{t:h_t(x)=y} \log \frac{1}{\beta_t} \)