

The Traveling Salesman Problem:

Adapting 2-Opt And 3-Opt Local Optimization to Branch & Bound Techniques

Hitokazu Matsushita

hitokazu@byu.edu

Ogden Mills

ogdenlaynemills@gmail.com

Nathan Lambson

nlambson@gmail.com

December 7, 2011

Professor Tony Martinez

BYU, Computer Science

Abstract

The Travelling Salesmen Problem has captured the
attention and resources of both the academic and
business world. In an effort to discover new, and
effective strategies to solve TSP, our team adapted
well known TSP strategies with optimization tech-
niques to create a unique algorithm capable of
solving this complex problem. The algorithm is
based on the 2-Opt and 3-Opt local search optimi-
zation algorithms and used in conjunction with a
modified branch and bound algorithm. The result is
a unique algorithm which is capable of solving an
ATSP (asymmetrical travelling salesman problem)
of 300 cities in approximately 12 minutes. The al-
gorithm gradually improved the solutions path
length as compared to the greedy solution until it
capped at approximately 26% for TSPs with 100+
cities.

1 Introduction

This report centers on the algorithm created by the authors
which solves ATSP problems. Different aspects of the algo-
rithm will be analyzed including core algorithm paradigms,
creative adaptations, optimization techniques, the process
which led to the algorithms structure, and the effectiveness
of the algorithm as compared to a greedy, random, and
Branch & Bound approach. Additional information will be
given on the Branch & Bound algorithm along with appli-
cable optimizations and how these affect the algorithm cre-
ated by the authors – a variation of the 2-Opt and 3-Opt lo-
cal search algorithms. In order to establish a basis for com-
parison, a discussion of the Greedy approach is necessary.

2 The Greedy Approach

2.1 Implementation of the Algorithm

The Greedy implementation starts from an arbitrary city and
searches for the shortest available path to an unvisited city.
After occupying this city the algorithm repeats the process
until it has arrived at the original city.

Source code for this implementation is to be found in the
files attached to this report – All algorithms discussed begin
in the “ProblemAndSolver.cs” file.

2.2 Purpose as a Benchmark

This approach applies the simplest form of optimization to
the naïve solution for TSP problems – Greediness. For this
reason the Greedy approach will serve as a benchmark
against other algorithms.

2.2 Big-O Complexity Analysis

The implementation of the Greedy algorithm uses the fol-
lowing non-trivial functions during its execution:

 City.costToGetTo - It is comprised of O(1) constant
time operations and reduces to O(1)

 TSPSolution.costOfRoute - Traverses each edge in a
given route, the size of a route is O(n) times some
constant factor which reduces to O(n).

 ProblemAndSolver.PickCheapestPath - Executes
constant time operations for every city in the cur-
rent citySet, O(n).

 ProblemAndSolver.FindGreedyRoute - For every
city it also calls PickCheapestPath, O(n^2)

 ProblemAndSolver.solveProblemGreedily - Essen-
tially a wrapper around FindGreedyRoute which
has O(n^2) runtime complexity.

The Big-O complexity of the Greedy Algorithm is O(n^2).

3 The Authors TSP Approach

3.1 Implementation of the Algorithm

Our TSP solution is a variation of the 2-opt and 3-opt local

search algorithm using the best BSSF (best solution so far)

from a 30 run of a Branch and Bound solution – with upper

and lower bounds – as the initial BSSF for the algorithm.
Source code for this implementation is to be found in the

files attached to this report – All algorithms discussed begin
in the “ProblemAndSolver.cs” file.

3.2 Local Search Algorithms

Local search algorithms are designed to be more efficient by
implementing a neighbor-style solution. A local search algo-
rithm can be defined in terms of the operations, exchanges
or moves, which can be applied to modify a given tour to
become like another tour. For example, if you began with a
feasible tour, the local search algorithm would perform a
series of exchanges or moves as long as it detected a gradual
improvement over each iteration. Once the algorithm termi-
nates it has discovered a locally optimal tour.

Local search algorithms are based on the basic operation

of a “move.” a move deletes two edges thereby dividing a

tour into two paths. Later, the algorithm will reconnect these

paths in the opposite configuration. This move was first

proposed by Flood[1956] and later adapted to the 2-opt local

search algorithm by Croes[1958]. The main idea behind it is

to take a route that crosses over itself and reorder it so that it

does not.

3.3 2-Opt and 3-Opt Local Optimization

2-opt, 3-opt, and k-opt search algorithms are among the

simplest and best known local search algorithms which still

yield significant benefits from the local search paradigm,

though there are certain weaknesses which should be con-

sidered. Papadimitriou and Steiglitz, [Papadimitriou &

Vazirani, 1984], showed that for 2-opt, 3-opt, and k-opt

algorithms, there are certain TSP’s which have only one

optimal tour but exponentially many locally optimal tours,

all of which are longer than the optimal tour by an exponen-

tial factor. Worst-case results for these types of algorithms

can be obtained if the TSP to be solved is not generated ran-

domly but contrived to exploit the weaknesses in 2-opt, 3-

opt, and k-opt search algorithms.

3.4 Branch & Bound

An important aspect of the algorithm is its need for a good

initial path. Even though the original use of the greedy algo-

rithm to generate the initial path was functional, it neverthe-

less hindered the algorithm on the whole and made analysis

of the 2-Opt and 3-Opt implantation impractical. Something

had to be done to further optimize the algorithm.

 Early on efforts were made to adapt the greedy algorithm

to create a tighter initial bound for the 2-Op and 3-Opt algo-

rithm, but the results were nominal. Seeing the importance

of the initial state used by the local search algorithm, the

focus for optimization shifted to efficiently creating an even

tighter initial bound for the 2-Opt and 3-Opot algorithm.

 Efforts to optimize the initial K-Opt algorithm path led to

the use of branch and bound. Branch and bound, being an

optimal algorithm, is capable of solving the same TSP prob-

lems as a local search algorithm but consumes available

resources very quickly. For this reason branch and bound

was restricted to a maximum 30-second execution period,

where the BSSF would then be used as the initial path for

the local search algorithm.

 Given such a small time constraint for branch and bound

to run, the algorithm was modified to “dig” for a solution

thereby greatly increasing the odds of finding an improved

BSSF within the time limit. In practice, for smaller values of

n, the branch and bound algorithm would often discover the

optimal solution.

3.5 Branch & Bound Implementation

The branch and bound algorithm used to determine the start-

ing path for the 2-Opt and 3-Opt algorithm uses both upper

and lower bounds in conjunction with digging, or depth-first

searches, in order to more reliably return a useful BSSF

within its 30-second execution time limit.

 Two queues were created, one for the include states and

the other for the exclude states. This modified branch and

bound would first empty the include queue and then proceed

to do the same with the exclude queue, forcing it to dig as

deep as possible. This helped greatly in consistently return-

ing better solutions – even when the algorithm timed out.

This improved initial value for the local search algorithm

proved key in optimizing the algorithm as a whole.

3.4 Why These Algorithms Were Selected

One of the most reasonable and robust approaches to ad-

dress the TSP problem is local search. The most basic im-

plementation of local search for TSP is called 2-opt. In 2-

opt, two arbitrary edges in the existing route are chosen and

examine whether the cost of those edges are reduced by

exchanging those edges. The same process is iteratively

conducted for any pair of edges and terminated when there

is no more improvement. This is a simple but powerful

method to quickly search through and identify a better route

than the current one in a simple nested loop. However, this

approach is prone to be caught by a local optimum because

the next option to take in the exchange process relies solely

on the particular two edges, which is similar to greedy

search in terms of the narrow horizon. This indicates that the

possibility of reaching local optima is very high when the

total number of cities are quite large due to many local op-

tima in such a case. Furthermore, 2-opt can be quite ineffec-

tive in our problem setting because the paths between two

cities are asymmetric and there are chances that the costs of

edges between cities can be infinity.

To mitigate the chances of being caught by some local

optima with 2-opt, we further investigated incorporating 3-

opt local search, in which three consecutive cities are insert-

ed in the other positions of the route and are then analyzed

for any potential cost reduction. This method is simply a

variation of 2-opt; therefore it is not guaranteed to avoid

local optima in the process of searching. However, the

chances to find the global optimum is increased by using 2-

opt and 3-opt concurrently because the patterns of route

change proposed by these two approaches are fundamentally

different. To combine these two local search methods, we

implemented the algorithms in a sequential order and itera-

tively examined all the possible paths proposed by them.

Another problem caused by local search is minimizing

the cost of internal edges enclosed between the exchanged

edges. In the regular 2-opt or 3-opt, this can be dealt with

simply by reversing the order of such internal nodes to

maintain the adjacent relations between cities in the original

route. However, this is not true in our case because of the

asymmetric nature of the edges in this problem. To ensure

that we always obtained a better solution than the current

solution, after edge exchanges we restricted the path ex-

change to when both edge exchange and reordering of the

internal cities in the route resulted in a better route. Howev-

er, we assumed that this condition could be too tight thereby

reducing the possibilities of obtaining better solutions. To

increase the chances to find better solutions, we implement-

ed greedy search locally (i.e., cities between the exchanged

edges). Although this approach sacrificed time efficiency,

we were able to find more reasonable solutions which

seemed to be optimal in many cases up to 150 cities.

3.5 Pros and Cons

Pros

 Because our algorithm is a local search algorithm

it is also an “anytime algorithm,” meaning that

the algorithm can be terminated at any time and

still return a “best solution so far.”

 Our TSP algorithm is relatively simple to imple-

ment as compared to many other more compli-

cated TSP solution styles.

 Despite having certain configurations of TSP

which will cause poor performance from local

search algorithms, real-world worst-case scenar-

ios are much better than the theoretical worst-

case scenarios.

Cons

 There are known configurations of TSPs which will

cause worst-case scenarios.

 There are other, more complicated, variations of the

2-opt and 3-opt local search algorithms which yield

better results

 Local search algorithms have a tendency to search

“excessively” as compared to other styles and rely

on tight bounding functions to mitigate these ef-

fects.

4 Typical Screenshots of Each Algorithm

5 Empirical Results Table of TSP Algorithms

Random

of Cit-

ies

Speed Path Imp

15 0.000 7,776.22 0.000

30 0.000 16,145.875 0.000

60 0.000 31,198.000 0.000

120 0.001 64,581.250 0.000

240 0.002 123,683.333 0.000

Greedy

of Cit-

ies

Speed Path Imp

15 0.001 4,173.33 0.463

30 0.001 5,466.333 0.661

60 0.004 8,126.778 0.740

120 0.012 11,862.667 0.816

240 0.064 17,685.000 0.857

B & B

of Cit-

ies

Speed Path Imp

15 0.015 3,364.56 0.194

30 17.310 4,573.889 0.163

60 TB TB TB

120 TB TB TB

240 TB TB TB

Groups TSP

of Cit-

ies

Speed Path Imp

15 0.021 3,364.56 0.194

30 17.572 4,568.444 0.164

60 77.801 6,230.556 0.233

120 55.380 8,671.333 0.269

240 515.413 12,925.111 0.269

5.1 Discussion and Analysis of Results

For smaller cities (below 50) our algorithm performs as well
as branch and bound because branch and bound usually dis-
covers the correct solution making 2-Opt and 3-Opt unnec-
essary. As the city size increases our algorithm constantly
improves as compared to the greedy implementation. It’s
improvement as compared to greedy is capped at approxi-
mately 26% for TSPs with 100+ cities. It is able to take
what branch and bound found in 30 seconds and improve on

it until no improvements can be found via the 2-Opt and 3-
Opt local search algorithm. Our algorithm excels at finding
solutions quickly, even for large numbers of cities, though
there is no practical way of knowing if the result discovered
is the actual optimal solution or how close it might be. Since
our algorithm solved up to 300 cities in 12 minutes, this
algorithm is ideal if you need a quick and relatively good
path in a short amount of time.

References

Flood[1956] M. M. FLOOD, ‘‘The traveling-salesman
problem,’’ Operations Res. 4 (1956), 61-75

Croes[1958] G. A. CROES, ‘‘A method for solving travel-
ing salesman problems,’’ Operations Res. 6 (1958), 791-
812

[Papadimitriou & Vazirani, 1984] C. H. PAPADIMITRIOU
AND U. V. VAZIRANI, ‘‘On two geometric problems
related to the travelling salesman problem,’’ J. Algo-
rithms 5 (1984), 231-246

