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Abstract 

The Travelling Salesmen Problem has captured the 
attention and resources of both the academic and 
business world. In an effort to discover new, and 
effective strategies to solve TSP, our team adapted 
well known TSP strategies with optimization tech-
niques to create a unique algorithm capable of 
solving this complex problem. The algorithm is 
based on the 2-Opt and 3-Opt local search optimi-
zation algorithms and used in conjunction with a 
modified branch and bound algorithm. The result is 
a unique algorithm which is capable of solving an 
ATSP (asymmetrical travelling salesman problem) 
of 300 cities in approximately 12 minutes. The al-
gorithm gradually improved the solutions path 
length as compared to the greedy solution until it 
capped at approximately 26% for TSPs with 100+ 
cities.  

1 Introduction 

This report centers on the algorithm created by the authors 
which solves ATSP problems. Different aspects of the algo-
rithm will be analyzed including core algorithm paradigms, 
creative adaptations, optimization techniques, the process 
which led to the algorithms structure, and the effectiveness 
of the algorithm as compared to a greedy, random, and 
Branch & Bound approach. Additional information will be 
given on the Branch & Bound algorithm along with appli-
cable optimizations and how these affect the algorithm cre-
ated by the authors – a variation of the 2-Opt and 3-Opt lo-
cal search algorithms.  In order to establish a basis for com-
parison, a discussion of the Greedy approach is necessary.  

2 The Greedy Approach 

2.1 Implementation of the Algorithm  

The Greedy implementation starts from an arbitrary city and 
searches for the shortest available path to an unvisited city. 
After occupying this city the algorithm repeats the process 
until it has arrived at the original city. 

Source code for this implementation is to be found in the 
files attached to this report – All algorithms discussed begin 
in the “ProblemAndSolver.cs” file. 

2.2 Purpose as a Benchmark 

This approach applies the simplest form of optimization to 
the naïve solution for TSP problems – Greediness. For this 
reason the Greedy approach will serve as a benchmark 
against other algorithms. 
 

2.2 Big-O Complexity Analysis 

The implementation of the Greedy algorithm uses the fol-
lowing non-trivial functions during its execution: 
 

 City.costToGetTo - It is comprised of O(1) constant 
time operations and reduces to O(1) 

 TSPSolution.costOfRoute - Traverses each edge in a 
given route, the size of a route is O(n) times some 
constant factor which reduces to O(n). 

 ProblemAndSolver.PickCheapestPath - Executes 
constant time operations for every city in the cur-
rent citySet, O(n). 

 ProblemAndSolver.FindGreedyRoute - For every 
city it also calls PickCheapestPath, O(n^2) 

 ProblemAndSolver.solveProblemGreedily - Essen-
tially a wrapper around FindGreedyRoute which 
has O(n^2) runtime complexity. 

 
The Big-O complexity of the Greedy Algorithm is O(n^2). 

3 The Authors TSP Approach 

3.1 Implementation of the Algorithm 

Our TSP solution is a variation of the 2-opt and 3-opt local 

search algorithm using the best BSSF (best solution so far) 

from a 30 run of a Branch and Bound solution – with upper 

and lower bounds – as the initial BSSF for the algorithm.  
Source code for this implementation is to be found in the 

files attached to this report – All algorithms discussed begin 
in the “ProblemAndSolver.cs” file. 
 

3.2 Local Search Algorithms 

Local search algorithms are designed to be more efficient by 
implementing a neighbor-style solution. A local search algo-
rithm can be defined in terms of the operations, exchanges 
or moves, which can be applied to modify a given tour to 
become like another tour. For example, if you began with a 
feasible tour, the local search algorithm would perform a 
series of exchanges or moves as long as it detected a gradual 
improvement over each iteration. Once the algorithm termi-
nates it has discovered a locally optimal tour. 

Local search algorithms are based on the basic operation 

of a “move.” a move deletes two edges thereby dividing a 

tour into two paths. Later, the algorithm will reconnect these 

paths in the opposite configuration. This move was first 

proposed by Flood[1956] and later adapted to the 2-opt local 

search algorithm by Croes[1958]. The main idea behind it is 

to take a route that crosses over itself and reorder it so that it 

does not. 



3.3 2-Opt and 3-Opt Local Optimization 

2-opt, 3-opt, and k-opt search algorithms are among the 

simplest and best known local search algorithms which still 

yield significant benefits from the local search paradigm, 

though there are certain weaknesses which should be con-

sidered. Papadimitriou and Steiglitz, [Papadimitriou & 

Vazirani, 1984], showed that for 2-opt, 3-opt, and k-opt 

algorithms, there are certain TSP’s which have only one 

optimal tour but exponentially many locally optimal tours, 

all of which are longer than the optimal tour by an exponen-

tial factor. Worst-case results for these types of algorithms 

can be obtained if the TSP to be solved is not generated ran-

domly but contrived to exploit the weaknesses in 2-opt, 3-

opt, and k-opt search algorithms.  

3.4 Branch & Bound 

An important aspect of the algorithm is its need for a good 

initial path. Even though the original use of the greedy algo-

rithm to generate the initial path was functional, it neverthe-

less hindered the algorithm on the whole and made analysis 

of the 2-Opt and 3-Opt implantation impractical. Something 

had to be done to further optimize the algorithm.  

 Early on efforts were made to adapt the greedy algorithm 

to create a tighter initial bound for the 2-Op and 3-Opt algo-

rithm, but the results were nominal. Seeing the importance 

of the initial state used by the local search algorithm, the 

focus for optimization shifted to efficiently creating an even 

tighter initial bound for the 2-Opt and 3-Opot algorithm. 

 Efforts to optimize the initial K-Opt algorithm path led to 

the use of branch and bound. Branch and bound, being an 

optimal algorithm, is capable of solving the same TSP prob-

lems as a local search algorithm but consumes available 

resources very quickly. For this reason branch and bound 

was restricted to a maximum 30-second execution period, 

where the BSSF would then be used as the initial path for 

the local search algorithm. 

 Given such a small time constraint for branch and bound 

to run, the algorithm was modified to “dig” for a solution 

thereby greatly increasing the odds of finding an improved 

BSSF within the time limit. In practice, for smaller values of 

n, the branch and bound algorithm would often discover the 

optimal solution. 

3.5 Branch & Bound Implementation 

The branch and bound algorithm used to determine the start-

ing path for the 2-Opt and 3-Opt algorithm uses both upper 

and lower bounds in conjunction with digging, or depth-first 

searches, in order to more reliably return a useful BSSF 

within its 30-second execution time limit. 

 Two queues were created, one for the include states and 

the other for the exclude states. This modified branch and 

bound would first empty the include queue and then proceed 

to do the same with the exclude queue, forcing it to dig as 

deep as possible. This helped greatly in consistently return-

ing better solutions – even when the algorithm timed out. 

This improved initial value for the local search algorithm 

proved key in optimizing the algorithm as a whole. 

3.4 Why These Algorithms Were Selected 

One of the most reasonable and robust approaches to ad-

dress the TSP problem is local search. The most basic im-

plementation of local search for TSP is called 2-opt. In 2-

opt, two arbitrary edges in the existing route are chosen and 

examine whether the cost of those edges are reduced by 

exchanging those edges. The same process is iteratively 

conducted for any pair of edges and terminated when there 

is no more improvement. This is a simple but powerful 

method to quickly search through and identify a better route 

than the current one in a simple nested loop. However, this 

approach is prone to be caught by a local optimum because 

the next option to take in the exchange process relies solely 

on the particular two edges, which is similar to greedy 

search in terms of the narrow horizon. This indicates that the 

possibility of reaching local optima is very high when the 

total number of cities are quite large due to many local op-

tima in such a case. Furthermore, 2-opt can be quite ineffec-

tive in our problem setting because the paths between two 

cities are asymmetric and there are chances that the costs of 

edges between cities can be infinity. 

To mitigate the chances of being caught by some local 

optima with 2-opt, we further investigated incorporating 3-

opt local search, in which three consecutive cities are insert-

ed in the other positions of the route and are then analyzed 

for any potential cost reduction. This method is simply a 

variation of 2-opt; therefore it is not guaranteed to avoid 

local optima in the process of searching. However, the 

chances to find the global optimum is increased by using 2-

opt and 3-opt concurrently because the patterns of route 

change proposed by these two approaches are fundamentally 

different. To combine these two local search methods, we 

implemented the algorithms in a sequential order and itera-

tively examined all the possible paths proposed by them. 

Another problem caused by local search is minimizing 

the cost of internal edges enclosed between the exchanged 

edges. In the regular 2-opt or 3-opt, this can be dealt with 

simply by reversing the order of such internal nodes to 

maintain the adjacent relations between cities in the original 

route. However, this is not true in our case because of the 

asymmetric nature of the edges in this problem. To ensure 

that we always obtained a better solution than the current 

solution, after edge exchanges we restricted the path ex-

change to when both edge exchange and reordering of the 

internal cities in the route resulted in a better route. Howev-

er, we assumed that this condition could be too tight thereby 

reducing the possibilities of obtaining better solutions. To 

increase the chances to find better solutions, we implement-

ed greedy search locally (i.e., cities between the exchanged 

edges). Although this approach sacrificed time efficiency, 



we were able to find more reasonable solutions which 

seemed to be optimal in many cases up to 150 cities.    

3.5 Pros and Cons  

Pros 

 Because our algorithm is a local search algorithm 

it is also an “anytime algorithm,” meaning that 

the algorithm can be terminated at any time and 

still return a “best solution so far.”  

 Our TSP algorithm is relatively simple to imple-

ment as compared to many other more compli-

cated TSP solution styles. 

 Despite having certain configurations of TSP 

which will cause poor performance from local 

search algorithms, real-world worst-case scenar-

ios are much better than the theoretical worst-

case scenarios.  

Cons 

 There are known configurations of TSPs which will 

cause worst-case scenarios.  

 There are other, more complicated, variations of the 

2-opt and 3-opt local search algorithms which yield 

better results 

 Local search algorithms have a tendency to search 

“excessively” as compared to other styles and rely 

on tight bounding functions to mitigate these ef-

fects. 



4 Typical Screenshots of Each Algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 



 



5 Empirical Results Table of TSP Algorithms 

Random 

# of Cit-

ies 

Speed Path Imp 

15 0.000 7,776.22 0.000 

30 0.000 16,145.875 0.000 

60 0.000 31,198.000 0.000 

120 0.001 64,581.250 0.000 

240 0.002 123,683.333 0.000 

 

Greedy 

# of Cit-

ies 

Speed Path Imp 

15 0.001 4,173.33 0.463 

30 0.001 5,466.333 0.661 

60 0.004 8,126.778 0.740 

120 0.012 11,862.667 0.816 

240 0.064 17,685.000 0.857 

 

B & B 

# of Cit-

ies 

Speed Path Imp 

15 0.015 3,364.56 0.194 

30 17.310 4,573.889 0.163 

60 TB TB TB 

120 TB TB TB 

240 TB TB TB 

 

Groups TSP 

# of Cit-

ies 

Speed Path Imp 

15 0.021 3,364.56 0.194 

30 17.572 4,568.444 0.164 

60 77.801 6,230.556 0.233 

120 55.380 8,671.333 0.269 

240 515.413 12,925.111 0.269 
 

5.1 Discussion and Analysis of Results 

For smaller cities (below 50) our algorithm performs as well 
as branch and bound because branch and bound usually dis-
covers the correct solution making 2-Opt and 3-Opt unnec-
essary. As the city size increases our algorithm constantly 
improves as compared to the greedy implementation. It’s 
improvement as compared to greedy is capped at approxi-
mately 26% for TSPs with 100+ cities. It is able to take 
what branch and bound found in 30 seconds and improve on 

it until no improvements can be found via the 2-Opt and 3-
Opt local search algorithm. Our algorithm excels at finding 
solutions quickly, even for large numbers of cities, though 
there is no practical way of knowing if the result discovered 
is the actual optimal solution or how close it might be. Since 
our algorithm solved up to 300 cities in 12 minutes, this 
algorithm is ideal if you need a quick and relatively good 
path in a short amount of time. 
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