
 Vol. 12, Issue 6 (2011)
 Pages 101-105

ABSTRACT

The 2opt algorithm is a heuristic method that
uses a type of localized search to find near-
optimal solutions on traveling-salesman
datasets in polynomial time. In this paper, we
discuss a variation of the 2opt algorithm that
we call geo-2opt and we measure its
performance on several datasets, comparing it
to the performance of the branch-and-bound
and greedy algorithms.

INTRODUCTION

The traveling-salesman problem (TSP) is well-
known and highly studied.1 Since it is NP-
Complete,2 exponential time is required for all
currently known algorithms that are guaranteed to
find a globally optimal solution for a given set of
cities. However, there are many useful heuristic
algorithms that run in faster time. Many of these
heuristic algorithms use local-search techniques to
find locally optimal solutions within some subset of
solutions; the key is to choose a subset of solutions
that is very likely to contain the globally optimal
solution or at least a very good solution.
 One of these useful heuristic algorithms was first
proposed by G. A. Croes of the Shell Development
Company in Houston, Texas, in 1957.3 This
algorithm, which is now known as the “2opt”
method, proceeds as follows: First, find an initial
solution using a fast method, such as a greedy
approach. Next, delete two edges from the path; we
will refer to these edges as {a, b} and {c, d}. If the
sum of the costs of edges {a, d} and {b, c} is less
than the sum of the costs of {a, b} and {c, d},
replace {a, b} and {c, d} with {a, d} and {b, c} if
the distances between all pairs of cities are
symmetric. If there are asymmetric distances in the

dataset, it is necessary to do a more thorough check.
Specifically, we must verify that the cost of the path
{a, b, m1, m2, …, mj-1, mj, c, d} is greater than the
cost of the path {a, d, mj, mj-1, …, m2, m1, b, c},
where m1 … mj represent the cities in the path
between cities b and d in the order in which they
appear in our original solution. Repeat this process
for some set of pairs of edges in the current solution
as desired; the greater the number of edge pairs
examined, the greater the improvement over the
original solution is likely to be.
 The traditional 2opt algorithm has been shown to
perform much better in practice than its worst-case
theoretical bounds might suggest.4 In addition,
because it has been known for several decades,
there is plentiful peer-reviewed literature discussing
its variations and its derivative forms. Furthermore,
the algorithm itself is intuitive and relatively
straightforward to implement. For all these reasons,
a variation of the 2opt algorithm was chosen for this
project.

DESCRIPTION OF THE ALGORITHM

 Since the 2opt algorithm uses a form of local
search that moves out from an initial solution, it is
preferable that we start with a solution that is likely
to be close to the optimal solution. Careful study
revealed the fact that optimal paths for geometric
TSP problems usually comprise closed polygons
with no crossing edges. This intuitively makes sense
because, in a geometric TSP problem, “any tour that
crosses itself can be shortened by replacing a pair of
crossing edges, where an edge is a tour segment
going directly from one city to another.”5 With
these considerations in mind, we adopted an O(n3)
method from Sedgewick6 to generate an initial path
comprising a closed polygon with no crossing

Empirical Performance of Geo-2opt, a Variant of the 2opt
Algorithm, on Random Traveling-Salesman Datasets

Greg Philbrick, Matt Seeley, Justin Seliger

Computer Science Department, Brigham Young University, 3361 TMCB Provo, UT 84602

Received on December 7, 2011; awarded an A+ grade on December 7, 2011

edges. This method begins by taking three cities and
connecting them to form the simplest possible
polygon: a triangle. In order to add a new city to the
polygon, one edge between two cities that are
currently in the polygon must be deleted and two
new edges from those two cities to the new city
must be added. In order to ensure that the newly
expanded path maintains its identity as a closed
polygon, the two new edges added must not cross
any edges that remain in the path once whichever
edge we choose to delete is removed. Figures 1-4
illustrate the first full iteration of the city-adding
process. Once the updated polygon path is
completed, the process repeats by adding one city at
a time until all n cities are included in the path. This
method is implemented in the source code as
GetPolygonPath. On datasets where a closed-
polygon path is not found, a path with as few
crossing edges as possible is generated instead.

 Before moving on to the next step, the cost of the
reverse path is also calculated; the better of the two
paths is used as the initial path.
 With the initial path chosen, the next important
matter to consider is how to define a useful set of
pairs of edges in the initial path such that using the
2opt method on all these pairs of edges would be
likely to yield a worthwhile improvement. Because
the basic 2opt method is most likely to find a better
local solution if a large number of edge pairs are
examined, we decided to use the set of all possible
pairs of edges from the original solution. With a

dataset of size n, a given solution must have exactly
n edges (though it technically only has n-1 degrees
of freedom; once the first n-1 edges have been
chosen, there is only one permissible option for the
last edge). The number of possible ordered pairs of
two edges taken from a set of n edges without

replacement is , (n ∈

) ∩ (n ≥ 2). Thus, this set of edge pairs can be
defined in polynomial time. In order to increase the
likelihood of finding more improvements, we also
decided to consider replacing edges a given pair {a,
b}, {c, d} with the second alternate pair {c, a}, {d,
b} at each iteration in addition to the first alternate
pair {a, c}, {b, d} that is suggested in the original
2opt algorithm. That way, the number of possible
improvements examined is increased by a linear
factor. For this project we arbitrarily decided to
terminate once n improvements have been made in
order to limit the running time One iteration of this
modified 2opt approach is illustrated in figures 5-7.

Figure 2. The initial triangular
path.

Figure 3. Deciding which two
edges to add. Note that the
crossing edge is excluded.

Figure 4. The newly formed
polygon path including the
new edge.

Figure 1. The dataset.

Figure 5. The state of a current path before edges {a, b} and {c, d} are
replaced.

Figure 6. The state of the path if {a, b}, {c, d} is replaced with the
first alternative pair {a, c}, {b, d}. Note that the intermediate edges
connecting cities m1, …, mj that make up the sub-path between city b
and city c are replaced with the reversed-order sub-path mj, …, m1.
For datasets with asymmetric distances, the cost of the reversed-order
sub-path must be calculated because it may not equal the cost of the
original-order sub-path.

Figure 7. The state of the path if {a, b}, {c, d} is replaced with the
first alternative pair {c, a}, {d, b}. Note that the intermediate edges
connecting cities C1, …, Ck that make up the sub-path between city b
and city c are replaced with the reversed-order sub-path Ck, …, C1.

EMPIRICAL PERFORMANCE

 With our modified version of the 2opt algorithm
thus explained, its empirical performance will now
be discussed. Our first task was to gather data on
the performance of (1) an algorithm that generates a
random path, (2) a greedy algorithm, (3) a branch-
and-bound algorithm, and (4) our modified 2opt
algorithm (Geo-2opt). We chose to measure how
each algorithm performed in terms of elapsed time
and path length using datasets of 15, 40, 60, 100,
200, and 300 cities. For each different dataset size,
ten different trials with randomly generated datasets
of the respective size were performed. All trials
were performed on computers in the 1066 TMCB
lab in order to minimize variation due to processor
speeds and other hardware issues. The mean values
for elapsed time and path length were calculated
and recorded in figures 8-9.
 The differences in the table values are visible, but
it is first necessary to test whether or not they are
statistically significant. This baseline consideration
is important because any difference that could
plausibly be attributed to sampling error could cast
any conclusion we could make from this data into
doubt. For our null hypothesis, let H0 = µgreedy=µgeo-

2opt (i.e., there is no difference in the mean path
distances of the greedy algorithm and the Geo-2opt
algorithm for all datasets of size n). For the
alternative hypothesis, let Ha = µgreedy>µgeo-2opt (i.e.,
the mean path distance for the Geo-2opt algorithm
is less than the mean path distance for the greedy
algorithm for all datasets of size n). To test this
hypothesis, we will use a two-sample t test to
compare the mean path distances. The two-sample t
statistic is defined as:7

Using this equation and a t-distribution table for
nine degrees of freedom, the p-values for the
problems of each size are shown in figure 10.

Given these p-values for each dataset, we can safely
reject the null hypothesis and conclude that, on
average, the mean path distances produced by the
Geo-2opt algorithm on datasets of these sizes are
smaller than those produced by the greedy
algorithm. Thus, the Geo-2opt algorithm can be
considered useful for finding paths that are
regularly better than those found by the Greedy
algorithm.
 With the question of statistical significance
answered, we now consider what the results suggest
about the efficiency and accuracy of the Geo-2opt
algorithm. In terms of speed, the Geo-2opt
algorithm clearly runs in much less time than the
branch-and-bound algorithm. While the branch-and-
bond algorithm did not return a result after
approximately 15 minutes of running time on a
dataset of size 40, the geo-2opt algorithm returned a

Dataset
Size

µgreedy µgeo-2opt Difference t-statistic p-value

15 4115.4 3438.1 677.3 2.97 <0.01
40 6688.2 5346.7 1341.5 7.02 0.00
60 7962.7 6587.8 1374.9 7.45 0.00
100 11159.3 8564.4 2594.9 12.39 0.00
200 15663.6 12139.4 3524.2 9.17 0.00
300 20248.4 15156.5 5091.9 13.26 0.00
Figure 10. Tests for statistical significance to ensure that the
improvements are not due to sampling error.

 15 Speed 15 Path 15 Imp 40 Speed 40 Path 40 Imp 60 Speed 60 Path 60 Imp
Random 0.0008 8878.1 0.001 20525.1 0.0007 31614.3
Greedy 0.0016 4115.4 0.46355 0.0030003 6688.2 0.32585 0.005701 7962.7 0.25187
B & B 0.648 3322.3 0.80728 TB TB TB TB TB TB
Geo-2Opt 0.0239 3438.1 0.83542 0.335 5346.7 0.79942 0.988 6587.8 0.82733
Figure 9. Mean results for datasets of size 15, 40, and 60.

 100 Speed 100 Path 100 Imp 200 Speed 200 Path 200 Imp 300 Speed 300 Path 300 Imp
Random 0.001 53119.8 0.001 104962 0.0014 154551
Greedy 0.010201 11159.3 0.21008 0.037404 15663.6 0.14923 0.057306 20248.4 0.13101
B & B TB TB TB TB TB TB TB TB TB
Geo-2Opt 4.106 8564.4 0.76747 40.212 12139.4 0.77501 160.511 15156.5 0.74853
Figure 10. Mean results for datasets of size 100, 200, and 300.

̅ 	 ̅

	

solution in about one third of a second. It should
come as no surprise that the branch-and-bound
algorithm’s running time quickly became
unmanageable; its exponential rate of increase
simply makes it an impractical method for datasets
of large sizes. However, for the data that we were
able to collect (i.e., problems of size 15), the path
distance found by geo-2opt compared very
favorably with the path distance found by branch-
and-bound: geo-2opt returned a path distance that
was about 83.54% of the greedy distance, while
branch-and-bound returned a path distance that was
about 80.72% of the greedy distance. In other
words, branch-and-bound had a less than three
percent advantage over geo-2opt in terms of path
optimization. However, the running time required
for geo-2opt was about 3.69% of the running time
required for branch-and-bound. This suggests that
the geo-2opt algorithm offers a trade-off of a
relatively small sacrifice in accuracy for a
substantial gain in running-time efficiency.
 Another fascinating result was that the geo-opt
algorithm actually seemed to perform better in
terms of its improvement percentage with the larger
datasets than with the smaller ones. For the three
smaller problem sizes, the geo-2opt path distance
was, on average, about 82.07% of the greedy path.
For the three larger problem sets, the average
dropped to 76.37%. Because these results represent
a relatively small sample size of improvement
percentages, it is harder to say with certainty
whether the trend observed in these results was
simply due to noise or chance. This would be an
interesting question to explore in future research.
 In order to determine the empirical big-O bound
of the geo-2opt algorithm, we used the Texas
Instruments TI-89 graphing calculator to generate a
regression curve to fit the data points of running
time in seconds plotted against problem size. The
graph is shown in figure 11. We predicted that it
would be O(n4) because the number of possible
edge pairs for each path was O(n2) edge pairs, the
path reversals needed to calculate the alternative
moves for each edge pair were O(n), and we had
arbitrarily set the program to continue seeking
improvements to each successive complete path
until n improvements were made. As a result, we
chose to generate a quartic regression curve. With
coefficients rounded to four decimal places, the
curve that best fit the data was:

Running time = (6.9954 · 10-9)n4 + (4.507 · 10-6)n3 –
(2.6295 · 10-4)n2 + 0.0170n -1.974

This curve actually fit the data so accurately that the
R2 value was listed as one (1); in other words, the
curve fit the data so perfectly that, insofar as the TI-
89 could compute, 100% of the variation in running
time could be explained by the problem size. With
such an accurate equation to describe the geo-2opt
algorithm’s behavior, it becomes even clearer that
the constant coefficients are very favorable for this
apparently O(n4) algorithm. (It should be noted that
such a highly accurate curve would not be as
trustworthy if there had been only five data points
instead of six because the quartic regression
equation for any bivariate dataset of size five would
simply return the Legrange polynomial for that
dataset.)

CONCLUSION

The geo-2opt algorithm, a modified version of the
original 2-opt algorithm that uses a closed-polygon
path as the initial path for its local search,
performed very well on the datasets used in this
study. Its path-distance improvement over the
greedy algorithm was statistically significant,
leaving little doubt that it handily outperforms the
greedy algorithm in the average case. In addition,
for the dataset of size 15, its improvement
percentage over the greedy algorithm’s path
distance was less than three percent less optimal
than the improvement percentage of the branch-and-
bound algorithm. The data also suggest that geo-
2opt’s improvement percentage may increase as the
size of the dataset increases, though further research
will be needed to verify this observation. There is

Figure 11.

strong evidence that its running time is O(n4) with
extremely favorable constant factors, which
suggests it offers an excellent trade-off between
accuracy and running time. These data all suggest
that the geo-2opt algorithm is likely a powerful and
valuable tool for finding highly optimal solutions to
large TSP problems.

REFERENCES

1 M. R. Garey, R. L. Graham, and D. S. Johnson. 1976. “Some NP-complete geometric problems.” In Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing (STOC '76). ACM, New York, NY, USA, 10-22. DOI=10.1145/800113.803626
http://doi.acm.org/10.1145/800113.803626.
2 C. H. Papadimitriou. “The Euclidean travelling salesman problem is NP-complete.” Theoretical Computer Science vol. 4 (1977):
237-244.
3 G. A. Croes. “A method for solving traveling salesman problems.” Operations Res. vol 6 (1958): 791-812.
4 David S. Johnson and Lyle A. Mcgeoch. “The Traveling Salesman Problem: A Case Study in Local Optimization.” In Local Search
in Combinatorial Optimization. Princeton: Princeton University Press, 2003.
5 David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook, The Traveling Salesman Problem: A Computational
Study. Princeton: Princeton University Press, 2006,
6 Robert Sedgewick and Kevin Wayne, Algorithms, 4th Ed. Boston: Pearson Education, Inc., 2011, available online at
http://algs4.cs.princeton.edu/91primitives/.
7 David S. Moore, The Basic Practice of Statistics, 5th Ed. New York: W. H. Freeman and Company, 2010.

