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ABSTRACT 

The 2opt algorithm is a heuristic method that 
uses a type of localized search to find near-
optimal solutions on traveling-salesman 
datasets in polynomial time. In this paper, we 
discuss a variation of the 2opt algorithm that 
we call geo-2opt and we measure its 
performance on several datasets, comparing it 
to the performance of the branch-and-bound 
and greedy algorithms.     

INTRODUCTION 

The traveling-salesman problem (TSP) is well-
known and highly studied.1 Since it is NP-
Complete,2 exponential time is required for all 
currently known algorithms that are guaranteed to 
find a globally optimal solution for a given set of 
cities. However, there are many useful heuristic 
algorithms that run in faster time. Many of these 
heuristic algorithms use local-search techniques to 
find locally optimal solutions within some subset of 
solutions; the key is to choose a subset of solutions 
that is very likely to contain the globally optimal 
solution or at least a very good solution.  
    One of these useful heuristic algorithms was first 
proposed by G. A. Croes of the Shell Development 
Company in Houston, Texas, in 1957.3  This 
algorithm, which is now known as the “2opt” 
method, proceeds as follows: First, find an initial 
solution using a fast method, such as a greedy 
approach. Next, delete two edges from the path; we 
will refer to these edges as {a, b} and {c, d}. If the 
sum of the costs of edges {a, d} and {b, c} is less 
than the sum of the costs of {a, b} and {c, d}, 
replace {a, b} and {c, d} with {a, d} and {b, c} if 
the distances between all pairs of cities are 
symmetric. If there are asymmetric distances in the 

dataset, it is necessary to do a more thorough check. 
Specifically, we must verify that the cost of the path 
{a, b, m1, m2, …, mj-1, mj, c, d} is greater than the 
cost of the path {a, d, mj, mj-1, …, m2, m1, b, c}, 
where m1 … mj represent the cities in the path 
between cities b and d in the order in which they 
appear in our original solution.  Repeat this process 
for some set of pairs of edges in the current solution 
as desired; the greater the number of edge pairs 
examined, the greater the improvement over the 
original solution is likely to be.  
    The traditional 2opt algorithm has been shown to 
perform much better in practice than its worst-case 
theoretical bounds might suggest.4 In addition, 
because it has been known for several decades, 
there is plentiful peer-reviewed literature discussing 
its variations and its derivative forms. Furthermore, 
the algorithm itself is intuitive and relatively 
straightforward to implement. For all these reasons, 
a variation of the 2opt algorithm was chosen for this 
project.  
 
DESCRIPTION OF THE ALGORITHM 
 
    Since the 2opt algorithm uses a form of local 
search that moves out from an initial solution, it is 
preferable that we start with a solution that is likely 
to be close to the optimal solution. Careful study 
revealed the fact that optimal paths for geometric 
TSP problems usually comprise closed polygons 
with no crossing edges. This intuitively makes sense 
because, in a geometric TSP problem, “any tour that 
crosses itself can be shortened by replacing a pair of 
crossing edges, where an edge is a tour segment 
going directly from one city to another.”5 With 
these considerations in mind, we adopted an O(n3) 
method from Sedgewick6 to generate an initial path 
comprising a closed polygon with no crossing 
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edges. This method begins by taking three cities and 
connecting them to form the simplest possible 
polygon: a triangle. In order to add a new city to the 
polygon, one edge between two cities that are 
currently in the polygon must be deleted and two 
new edges from those two cities to the new city 
must be added. In order to ensure that the newly 
expanded path maintains its identity as a closed 
polygon, the two new edges added must not cross 
any edges that remain in the path once whichever 
edge we choose to delete is removed. Figures 1-4 
illustrate the first full iteration of the city-adding 
process. Once the updated polygon path is 
completed, the process repeats by adding one city at 
a time until all n cities are included in the path. This 
method is implemented in the source code as 
GetPolygonPath. On datasets where a closed-
polygon path is not found, a path with as few 
crossing edges as possible is generated instead.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Before moving on to the next step, the cost of the 
reverse path is also calculated; the better of the two 
paths is used as the initial path. 
    With the initial path chosen, the next important 
matter to consider is how to define a useful set of 
pairs of edges in the initial path such that using the 
2opt method on all these pairs of edges would be 
likely to yield a worthwhile improvement. Because 
the basic 2opt method is most likely to find a better 
local solution if a large number of edge pairs are 
examined, we decided to use the set of all possible 
pairs of edges from the original solution. With a 

dataset of size n, a given solution must have exactly 
n edges (though it technically only has n-1 degrees 
of freedom; once the first n-1 edges have been 
chosen, there is only one permissible option for the 
last edge). The number of possible ordered pairs of 
two edges taken from a set of n edges without 

replacement is , (n ∈ 

 ) ∩ (n ≥ 2). Thus, this set of edge pairs can be 
defined in polynomial time. In order to increase the 
likelihood of finding more improvements, we also 
decided to consider replacing edges a given pair {a, 
b}, {c, d} with the second alternate pair {c, a}, {d, 
b} at each iteration in addition to the first alternate 
pair {a, c}, {b, d} that is suggested in the original 
2opt algorithm. That way, the number of possible 
improvements examined is increased by a linear 
factor. For this project we arbitrarily decided to 
terminate once n improvements have been made in 
order to limit the running time One iteration of this 
modified 2opt approach is illustrated in figures 5-7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The initial triangular 
path. 

 
Figure 3. Deciding which two 
edges to add. Note that the 
crossing edge is excluded.  

Figure 4. The newly formed 
polygon path including the 
new edge. 

 
Figure 1. The dataset. 

 

 
Figure 5. The state of a current path before edges {a, b} and {c, d} are 
replaced.

 

 
Figure 6. The state of the path if {a, b}, {c, d} is replaced with the 
first alternative pair {a, c}, {b, d}. Note that the intermediate edges 
connecting cities m1, …, mj that make up the sub-path between  city b 
and city c are replaced with the reversed-order sub-path mj, …, m1. 
For datasets with asymmetric distances, the cost of the reversed-order 
sub-path must be calculated because it may not equal the cost of the 
original-order sub-path. 

 

 
Figure 7. The state of the path if {a, b}, {c, d} is replaced with the 
first alternative pair {c, a}, {d, b}. Note that the intermediate edges 
connecting cities C1, …, Ck that make up the sub-path between  city b 
and city c are replaced with the reversed-order sub-path Ck, …, C1.  



 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
EMPIRICAL PERFORMANCE 
 
    With our modified version of the 2opt algorithm 
thus explained, its empirical performance will now 
be discussed. Our first task was to gather data on 
the performance of (1) an algorithm that generates a 
random path, (2) a greedy algorithm, (3) a branch-
and-bound algorithm, and (4) our modified 2opt 
algorithm (Geo-2opt). We chose to measure how 
each algorithm performed in terms of elapsed time 
and path length using datasets of 15, 40, 60, 100, 
200, and 300 cities. For each different dataset size, 
ten different trials with randomly generated datasets 
of the respective size were performed. All trials 
were performed on computers in the 1066 TMCB 
lab in order to minimize variation due to processor 
speeds and other hardware issues.  The mean values 
for elapsed time and path length were calculated 
and recorded in figures 8-9.  
    The differences in the table values are visible, but 
it is first necessary to test whether or not they are 
statistically significant. This baseline consideration 
is important because any difference that could 
plausibly be attributed to sampling error could cast 
any conclusion we could make from this data into 
doubt. For our null hypothesis, let H0 = µgreedy=µgeo-

2opt (i.e., there is no difference in the mean path 
distances of the greedy algorithm and the Geo-2opt 
algorithm for all datasets of size n). For the 
alternative hypothesis, let Ha = µgreedy>µgeo-2opt (i.e., 
the mean path distance for the Geo-2opt algorithm 
is less than the mean path distance for the greedy 
algorithm for all datasets of size n). To test this 
hypothesis, we will use a two-sample t test to 
compare the mean path distances. The two-sample t 
statistic is defined as:7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using this equation and a t-distribution table for 
nine degrees of freedom, the p-values for the 
problems of each size are shown in figure 10.  
 
 
 
 
 
 
 
 
 
Given these p-values for each dataset, we can safely 
reject the null hypothesis and conclude that, on 
average, the mean path distances produced by the 
Geo-2opt algorithm on datasets of these sizes are 
smaller than those produced by the greedy 
algorithm. Thus, the Geo-2opt algorithm can be 
considered useful for finding paths that are 
regularly better than those found by the Greedy 
algorithm.  
    With the question of statistical significance 
answered, we now consider what the results suggest 
about the efficiency and accuracy of the Geo-2opt 
algorithm. In terms of speed, the Geo-2opt 
algorithm clearly runs in much less time than the 
branch-and-bound algorithm. While the branch-and-
bond algorithm did not return a result after 
approximately 15 minutes of running time on a 
dataset of size 40, the geo-2opt algorithm returned a 

Dataset 
Size 

µgreedy µgeo-2opt Difference t-statistic p-value 

15 4115.4 3438.1 677.3 2.97 <0.01 
40 6688.2 5346.7 1341.5 7.02 0.00 
60 7962.7 6587.8 1374.9 7.45 0.00 
100 11159.3 8564.4 2594.9 12.39 0.00 
200 15663.6 12139.4 3524.2 9.17 0.00 
300 20248.4 15156.5 5091.9 13.26 0.00 
Figure 10. Tests for statistical significance to ensure that the 
improvements are not due to sampling error. 

 15 Speed 15 Path 15 Imp  40 Speed 40 Path 40 Imp  60 Speed 60 Path 60 Imp  
Random 0.0008 8878.1  0.001 20525.1  0.0007 31614.3  
Greedy 0.0016 4115.4 0.46355 0.0030003 6688.2 0.32585 0.005701 7962.7 0.25187 
B & B 0.648 3322.3 0.80728 TB  TB TB TB TB TB 
Geo-2Opt 0.0239 3438.1 0.83542 0.335 5346.7 0.79942 0.988 6587.8 0.82733 
Figure 9. Mean results for datasets of size 15, 40, and 60. 

  100 Speed 100 Path 100 Imp  200 Speed 200 Path 200 Imp  300 Speed 300 Path 300 Imp  
Random 0.001 53119.8  0.001 104962  0.0014 154551  
Greedy 0.010201 11159.3 0.21008 0.037404 15663.6 0.14923 0.057306 20248.4 0.13101 
B & B TB TB TB TB TB TB TB TB TB 
Geo-2Opt 4.106 8564.4 0.76747 40.212 12139.4 0.77501 160.511 15156.5 0.74853 
Figure 10. Mean results for datasets of size 100, 200, and 300. 
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solution in about one third of a second. It should 
come as no surprise that the branch-and-bound 
algorithm’s running time quickly became 
unmanageable; its exponential rate of increase 
simply makes it an impractical method for datasets 
of large sizes. However, for the data that we were 
able to collect (i.e., problems of size 15), the path 
distance found by geo-2opt compared very 
favorably with the path distance found by branch-
and-bound: geo-2opt returned a path distance that 
was about 83.54% of the greedy distance, while 
branch-and-bound returned a path distance that was 
about 80.72% of the greedy distance.  In other 
words, branch-and-bound had a less than three 
percent advantage over geo-2opt in terms of path 
optimization. However, the running time required 
for geo-2opt was about 3.69% of the running time 
required for branch-and-bound. This suggests that 
the geo-2opt algorithm offers a trade-off of a 
relatively small sacrifice in accuracy for a 
substantial gain in running-time efficiency.   
    Another fascinating result was that the geo-opt 
algorithm actually seemed to perform better in 
terms of its improvement percentage with the larger 
datasets than with the smaller ones. For the three 
smaller problem sizes, the geo-2opt path distance 
was, on average, about 82.07% of the greedy path. 
For the three larger problem sets, the average 
dropped to 76.37%. Because these results represent 
a relatively small sample size of improvement 
percentages, it is harder to say with certainty 
whether the trend observed in these results was 
simply due to noise or chance. This would be an 
interesting question to explore in future research.  
    In order to determine the empirical big-O bound 
of the geo-2opt algorithm, we used the Texas 
Instruments TI-89 graphing calculator to generate a 
regression curve to fit the data points of running 
time in seconds plotted against problem size. The 
graph is shown in figure 11. We predicted that it 
would be O(n4) because the number of possible 
edge pairs for each path was O(n2) edge pairs, the 
path reversals needed to calculate the alternative 
moves for each edge pair were O(n), and we had 
arbitrarily set the program to continue seeking 
improvements to each successive complete path 
until n improvements were made. As a result, we 
chose to generate a quartic regression curve. With 
coefficients rounded to four decimal places, the 
curve that best fit the data was:  

Running time = (6.9954 · 10-9)n4 + (4.507 · 10-6)n3 – 
(2.6295 · 10-4)n2 + 0.0170n -1.974 

This curve actually fit the data so accurately that the 
R2 value was listed as one (1); in other words, the 
curve fit the data so perfectly that, insofar as the TI-
89 could compute, 100% of the variation in running 
time could be explained by the problem size. With 
such an accurate equation to describe the geo-2opt 
algorithm’s behavior, it becomes even clearer that 
the constant coefficients are very favorable for this 
apparently O(n4) algorithm. (It should be noted that 
such a highly accurate curve would not be as 
trustworthy if there had been only five data points 
instead of six because the quartic regression 
equation for any bivariate dataset of size five would 
simply return the Legrange polynomial for that 
dataset.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 
The geo-2opt algorithm, a modified version of the 
original 2-opt algorithm that uses a closed-polygon 
path as the initial path for its local search, 
performed very well on the datasets used in this 
study. Its path-distance improvement over the 
greedy algorithm was statistically significant, 
leaving little doubt that it handily outperforms the 
greedy algorithm in the average case. In addition, 
for the dataset of size 15, its improvement 
percentage over the greedy algorithm’s path 
distance was less than three percent less optimal 
than the improvement percentage of the branch-and-
bound algorithm. The data also suggest that geo-
2opt’s improvement percentage may increase as the 
size of the dataset increases, though further research 
will be needed to verify this observation. There is 

Figure 11. 



strong evidence that its running time is O(n4) with 
extremely favorable constant factors, which 
suggests it offers an excellent trade-off between 
accuracy and running time. These data all suggest 
that the geo-2opt algorithm is likely a powerful and 
valuable tool for finding highly optimal solutions to 
large TSP problems.  
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