
CS 252 - Probabilistic Turing Machines (Algorithms)
Additional Reading 3

and
Homework problems

3 Probabilistic Turing Machines

When we talked about computability, we found that nondeterminism was sometimes a con-
venient mechanism for designing algorithms but that it could be simulated deterministically;
that is, we found that “exotic” nondeterministic algorithms have no greater computational
ability than do their mundane deterministic cousins. However, now that we have begun to
consider issues of complexity, we are seeing evidence that nondeterminism may have the
advantage in terms of efficiency. Unfortunately, since we cannot actually implement nonde-
terministic algorithms, they serve only as a mathematical foil for reasoning about complexity
classes.

The idea of considering many different computational paths is appealing, and though we
cannot do so nondeterministically, probabilistic Turing machines are a deterministic “approx-
imation” that we can implement and that can be useful in some situations in which vanilla
deterministic Turing machines may not be. The high-level idea is that each nondeterministic
choice is simulated probabilistically. Different choices have different probabilities, and the
probability of a single computational history is the product of the probabilities of the choices
used to follow that history. Then, running such a machine can be thought of as effectively
probabilistically choosing one of the many nondeterministic “universes” to sample.

While this is computational feasible, it introduces a difficulty—the probabilistic path
chosen may result in an incorrect answer. This is not an issue for a nondeterministic machine
because it “magically” tries all possible computational paths and if any of them accept, it
accepts. However, since we are now probabilistically sampling a single path, it may end in
the reject state, even though some other path would accept. So, the question is, if we allow
a Turing machine to be wrong sometimes, can it still be useful? The answer is yes, under
certain reasonable conditions.

3.1 Formal Definition of Probabilistic Turing Machines

The formal definition of probabilistic Turing machine shares commonalities with DFAs and
Markov chains.

Definition 0.0.1. A Probabilistic Turing Machine is a 7-tuple (Q,Σ,Γ, δ, γ, q0, qaccept, qreject),
where

1. Q is a finite set called the states

2. Σ is a finite set called the input alphabet that does not contain the blank symbol 2

3. Γ is a finite set called the tape alphabet , where 2 ∈ Γ and Σ ⊆ Γ

1

4. δ : Q×Γ×Q∪{qaccept}∪{qreject}×Γ×{L,R} → [0 . . . 1] is the transition function

5. q0 is the start state

6. qaccept /∈ Q is the accept state

7. qreject /∈ Q is the reject state

Note that this only differs from the definition of a deterministic Turing machine in the
transition function δ. Here, like for our treatment of Markov chains, we define δ to return a
number in the range [0 . . . 1], which we interpret as a probability.

3.2 Computing with Probabilistic Turing Machines

For a probabilistic TM P , we take a similar approach to that of a deterministic TM, gen-
eralizing the idea as follows. We now say that a configuration C1 probabilistically yields
a configuration C2 with probability p if the probabilistic transition function maps the two
configurations to p.1 Let T = {T1, T2, . . . , Tn} be the set of all possible computational paths
of P on input w and let a path Ti consist of a sequence of configurations Ci,1, Ci,2, . . . , Ci,ki .
We say that path Ti accepts w with probability pTi if

1. Ci,1 is the start configuration of P on input w

2. each Ci,j probabilistically yields Ci,j+1 with probability pj

3. Ci,ki is an accepting configuration

4. pTi = Πjpj

Let A ⊆ T be the set of accepting paths of P . Then, we say that probabilistic TM P
accepts string w with probability p(w) =

∑
C∈A pC .

3.3 A simple example

Figure 1 visualizes the computational paths of a simple probabilistic Turing machine, with
each branch having an associated probability (given by the transition function δ) and with
some paths being accepting (the set A contains those paths numbered 1, 3 and 7) and others
rejecting (those numbered 2, 4, 5, 6, 8; recall that we have restricted ourselves to decidable
problems, so all paths are of finite length). The starting configuration C1 represents the ma-
chine in its start state reading the first symbol of the input string w. The configuration C2

represents one possible configuration after one computational step, and that computational
step will be chosen with probability 0.7. With probability 0.3, the other possible computa-
tional choice from the initial configuration will be chosen and the result will be configuration

1More formally, let a1, a2, b ∈ Σ, y, z ∈ Σ∗. Then, C1 probabilistically yields C2 with probability p
if C1 = yq1a1a2z, C2 = ybq2a2z and δ(q1, a1, q2, b, R) = p or if C1 = ya2q1a1z, C2 = yq2a2bz and
δ(q1, a1, q2, b, L) = p.

2

C3, and so on. The probability that path 1 accepts is p1 = 0.7× 0.5× 0.8 = 0.28. The prob-
ability that the machine accepts the string w is the sum of the probabilities of the accepting
paths, p(w) = p1 + p3 + p7 = 0.28 + 0.21 + 0.063 = 0.553.

3.4 The Class BPP

The complexity class BPP is the probabilistic counterpart to the complexity class P. It
contains all languages that can be decided in polynomial time with a probabilistic TM
whose error bound ε is better than random guessing (so, because all languages in P can be
decided with 0 error, in particular P ⊆ BPP). The trick is guaranteeing a bound on ε, and
that is language dependent and beyond the scope of this treatment.

Definition 0.0.2. BPP is the class of languages that can be decided by a probabilistic
polynomial time Turing machine with an error probability ε < 1

2
.

Note that the error bound must be strictly less than 0.5, but it can be arbitrarily close to
0.5. That is to say, as long as the machine is doing slightly better than random guessing, it
will be good enough. While this seems like an unsatisfactory kind of an algorithm (especially
in safety-critical situations), given such a “weak” solution, the following amplification tech-
nique allows us to use it to construct a “strong” solution, one that can have an arbitrarily
low error probability while running in a reasonable amount of time.

3.4.1 Amplification

Amplification is a very simple idea—run the weak algorithm multiple times and take the
majority answer. The question, of course, is how many times the weak algorithm must
be run before we are confident that the majority answer represents the correct answer.

Figure 1: Eight probabilistic computational paths for a simple probabilistic TM.

3

Fortunately, we don’t have to run it very many times before we can start to be confident. Of
course, the weaker the algorithm (the closer its error is to 0.5), the more times we will have
to run it; and, the more confident we want to be, the more times we’ll have to run it. But,
remarkably, the number of runs needed scales only polynomially with the error rate and the
desired confidence.

Suppose we have a weak probabilistic TM P1 with error rate ε1 < 0.5. We create a strong
probabilistic TM P2, with error rate ε2 as follows:

P2 = on input < w, β >
1. Calculate k for desired error bound β
2. Run 2k simulations of P1 on input w
3. If most runs of P1 accept, then accept ; otherwise, reject

Since P2 outputs the majority decision of multiple runs of P1, it will answer incorrectly
only when the majority of P1’s outputs are incorrect. That is, ε2 is the probability that 2k
runs of P1 produce a misleading majority. What is this probability? While finding an exact
answer might be difficult, we can find an upper bound on the probability. Indeed, we will
claim that it drops exponentially with each simulation of P1 and that, as a result, we can
bound the error as low as we’d like with a polynomial number of runs of P1. We offer here
without proof, the following claims (see Appendix for proofs):

Claim 1: Error rate ε2 ≤ β.
Claim 2: The runtime of P2 is polynomial in |w| and β.
The result of these claims is that we can drive the error rate of P2 very low very quickly,

quickly enough that we can become arbitrarily confident in the answer, even if it is based
on a very weak P1.

3.4.2 An example

Suppose P1 has an error rate of ε1 = 0.3, and suppose we would like to use it to build P2

such that ε2 ≤ 0.001. If we choose k = 40 and therefore run P1 80 times and report the
majority decision (see Appendix for how to calculate k), then by Claim 3 (see Appendix)
the error probability ε2 for this majority vote is bounded by

ε2 ≤ (4ε1(1− ε1))k ≤ (4(0.3)(0.7))40 = 0.000935775008617 ≤ 0.001

3.5 Exercises

Exercise 3.1. Consider the following scenario. A high school senior is taking a college
entrance exam to determine which of two universities she will attend. The exam consists of a
single True/False question. If the student answers correctly, she will attend Blue University.
If the student answers incorrectly, she will attend The University of Red. Because the
question is so difficult, the student is allowed access to a probabilistic TM that gives the
correct answer only 50.001% of the time. The student does not know the answer and knows

4

she must guess, but she would like to be 99.99999% confident in her guess. How many times
should she query the TM before she chooses her answer?

Exercise 3.2. Suppose we have a language A, a polynomial time Turing machine M and
two fixed error bounds ε1 and ε2 where0 < ε1 < ε2 < 1. Further suppose that M works as
follows: a. For any w ∈ A, M accepts with probability at least ε2. b. For any w /∈ A,
M accepts with probability no greater than ε1.

Think about the result of using an amplification technique on M and explain why A ∈
BPP (even though we have two error bounds, one or both of which might be greater than
1
2
).

3.6 Appendix. Math: Proceed with Caution

Claim 1: Error rate ε2 ≤ β.

Proof. Let

k =

⌈
log2(

1
β
)

− log2(4ε1(1− ε1))

⌉
Then, using logarithmic identities, we have

k ≥
log2(

1
β
)

− log2(4ε1(1− ε1))
= − log(4ε1(1−ε1))(

1

β
) = log(4ε1(1−ε1))(β)

Since ε1 < 0.5 and therefore (4ε1(1− ε1)) < 1, by Claim 3 below,

ε2 ≤ (4ε1(1− ε1))k ≤ (4ε1(1− ε1))log(4ε1(1−ε1))(β) = β

Claim 2: The runtime of P2 is polynomial in |w| and β.

Proof. P2 is composed of three steps. Step 1 is a simple calculation for the value of k
(given in the proof Claim 1) and is clearly O(poly(|w|, β)). Step 2 is a loop that runs
2k times. Each pass through the loop consists of simulating P1, which by assumption is
polynomial O(poly(|w|)). Since the value of k ≈ log β, it is clearly O(poly(β)). Combining,
we have that step 2 is O(poly(β) ∗ poly(|w|)). Step 3 is O(1). So, the entire algorithm is
O(poly(|w|, β)) +O(poly(β) ∗ poly(|w|)) +O(1).

Claim 3: Error rate ε2 ≤ (4ε1(1− ε1))k.

Proof. Recall that ε1 < 0.5 is the probability that P1 outputs an incorrect answer. Then,
(1− ε1) > 0.5 is the probability that P1 outputs correctly. Given a sequence s of 2k outputs
from P1, let c be the number of correct answers and d be the number of incorrect answers in
the sequence. Call a sequence misleading if d ≥ c because when d ≥ c, P2 is misled by the
majority and outputs incorrectly. Let Sm be the set of all misleading sequences. Then the

5

error probability ε2 for P2 can informally be expressed as

ε2 = the probability that 2k runs of P1 will produce a misleading sequence s ∈ Sm

Letting ps represent the probability of a single simulation of P1 producing sequence s, we
can say more formally,

ε2 =
∑
s∈Sm

ps

Since the simulation runs are independent, the probability of seeing a particular sequence
s with c correct answers and d incorrect answers is

ps = εd1(1− ε1)c

For a misleading sequence s ∈ Sm, since d+ c = 2k and d ≥ c and (1− ε1) > ε1,

ps = εd1(1− ε1)c ≤ εk1(1− ε1)k

Finally, since the total number all possible sequences is 22k and therefore |Sm| ≤ 22k, we
can say

ε2 =
∑
s∈Sm

ps ≤
∑
s∈Sm

εk1(1− ε1)k ≤ 22kεk1(1− ε1)k = (4ε1(1− ε1))k

6

