
CS 252 - Näıve Bayes
Additional Reading 4

and
Homework problems

4 Näıve Bayes

In our treatment of probabilistic algorithms, we were able to make some strong statements
about our confidence in their accuracy and the complexity of attaining that confidence by
assuming a guaranteed bound on the error ε. In cases when we can obtain this guarantee,
we can rely on such results. But what about situations in which we can not bound the
error? Or situations in which there are more than two possible outcomes and in which only
a plurality (rather than a majority) vote can be obtained? Or situations in which the answer
is not deterministic (e.g. a string may be accepted sometimes and rejected others). In such
situations, what we can guarantee about the correctness of answers is much more limited,
but there still are algorithms that can be efficient and effective. One general class of such
algorithms is the Bayesian network. In the context of language membership that has defined
our study of algorithms, a Bayesian network is a model that tries to compute the most likely
language membership value for a string w. That is, it tries to decide for a string w whether
it is more likely in some language L or whether it is more likely not. While describing this
general class of algorithms is beyond the scope of this reading, we will describe a special case
called näıve Bayes.

To begin with, let’s define a bit of notation. Let us consider a situation in which string
w’s membership may not be determined with certainty; instead we can consider it to have
some probability of being in language L. Let p(w) be the probability of encountering a string
w (this is often called the marginal), p(d) be the prior probability of decision d being the
correct decision (about a string’s membership in a language), p(w|d) be the probability of
encountering string w if decision d holds (often called the likelihood) and p(d|w) be the poste-
rior probability that decision d is correct. What we are interested in is this last probability.
That is, given a string w, we’d like to know the probability that w is in L. But how do we
compute this? Bayes’ Law tells us that

p(d|w) =
p(d)p(w|d)

p(w)

Does this help us any? Well, sort of. It is hard to know what p(w) might be, but, if our goal
is just to choose d such that p(d|w) is highest, we can ignore this denominator and write

p(d|w) ∝ p(d)p(w|d)

If we were given p(d) and p(w|d), we could then decide what the most likely value for d is
given w. In the case of language membership, d can take only two values: Y or N. p(d) is
called the prior distribution because it is our best guess at the probability of a string being

1

in L before we know what string we are talking about. Barring any information about L, we
might decide to use a prior that weights both decisions equally (if we have some information
about L that gives us a better guess at p(d), we should of course make use of that). Now,
suppose that p(w|d) is somehow given to us. We can then compute p(d|w) for any w as

argmax
d

p(d)p(w|d)

4.0.1 Example

Let Σ = {0, 1}, w ∈ Σ∗, n = |w| and k be the number of 1’s in the w. Suppose p(d) is given
to us as

p(d) Y N
0.3 0.7

and that p(w|d) is given to us as

p(w|d) Y N
k
m

0.25

What is the best answer for the question, “Is string w = 11000 in L?” It is the decision d
that maximizes the posterior probability, p(d|w); that is, it is

argmax
d

p(d)p(11000|d)

So, since,

p(Y)p(11000|Y) = (0.3)(
2

5
) = 0.12

and
p(N)p(11000|N) = (0.7)(0.25) = 0.175

the most likely answer is w /∈ L. On the other hand, for the string w = 10111,

p(Y)p(10111|Y) = (0.3)(
4

5
) = 0.24

and
p(N)p(10111|N) = (0.7)(0.25) = 0.175

and the most likely answer is w ∈ L.

4.1 Estimating the Likelihood

What if we do not know the prior and likelihood probabilities? We’ve already suggested that
the prior might be estimated as equal probability for both decisions, if we don’t have any
other information to help us. But what about the likelihood? That conditional probability
p(w|d) is really the probability p(a1a2 . . . an|d), where a1 is the value of the first symbol
of w, a2 is the value of the second, etc. That is, p(a1a2, . . . , an|d) is the joint conditional

2

probability of a1 . . . an (given d). Computing this joint probability, in general, is difficult
because

p(a1a2 . . . an|d) = p(a1|d)p(a2|d, a1)p(a3|d, a1a2) . . . p(an|d, a1a2 . . . an−1)1

Unfortunately, estimating and computing these partial joint probabilities can be very
difficult and very expensive, and many algorithmic approaches make use of simplifying as-
sumptions to make the computation tractable. The most drastic of these assumptions is
that the joint events are independent; that is, ∀i,j,i6=jp(ai|d) = p(ai|d, aj). In other words,
the probability of value ai occurring at position i in w (given d) is not affected by the pres-
ence (or absence) of value aj at position j. Given this assumption, computing the joint
conditional probability is significantly simplified, becoming

p(a1a2 . . . an|d) = p(a1|d)p(a2|d)p(a3|d) . . . p(an|d)

So, the likelihood has now been simplified to the product of relatively simple distributions of
symbol values for different positions in the string w (given d). How might we estimate these?
One good way is to do it empirically from examples. If we can get a hold of a set of words
labeled as Y and N instances, we can count different values in different string positions for
each type of word and use the counts to estimate the probabilities.

4.1.1 Example

Suppose we have been given two sets of strings,

A = {000, 001, 110, 101}
B = {111, 110, 011, 101}

The strings in A have been classified as yes-instances for a language L, and the strings in B
as no-instances. We would like to build a näıve Bayes model from these examples and use it
to decide if 100 ∈ L. To make our decision, we must calculate

argmax
d

p(d)p(w|d) = p(d)p(100|d) = p(d)p(a1 = 1|d)p(a2 = 0|d)p(a3 = 0|d)

As our prior, we will let p(Y) = p(N) = 0.5.2 We will estimate the following probabilities
from the sets A and B:

p(a1 = 1|Y) = 2
4

= 0.5
p(a2 = 0|Y) = 3

4
= 0.75

p(a3 = 0|Y) = 2
4

= 0.5
p(a1 = 1|N) = 3

4
= 0.75

p(a2 = 0|N) = 1
4

= 0.25
p(a3 = 0|N) = 1

4
= 0.25

1It can be decomposed in many other ways as well.
2This seems like a good choice, given that |A| = |B|.

3

Then, computing the argmax,

p(Y)p(a1 = 1|Y)p(a2 = 0|Y)p(a3 = 0|Y) = (0.5)(0.5)(0.75)(0.5) = 0.09375

p(N)p(a1 = 1|N)p(a2 = 0|N)p(a3 = 0|N) = (0.5)(0.75)(0.25)(0.25) = 0.0234375

and we see that the most likely decision for the string 100 is that it is a yes-instance.

4.2 Generalization

Note that what we’ve done easily generalizes to any number of classifications and any number
of alphabet symbols. Simply compute the needed conditional probabilities for each value d
can take and then compute the argmax over all the possibilities.

4.3 Exercises

Exercise 4.1. You are given three sets of strings A, B and C, classified as type 0, type 1
and type 2 strings respectively. Build a näıve Bayes model from these data and use it to
decide a type for the following three strings: {0000, 1001, 0011}.

A = {1011, 0111, 2011}
B = {0001, 0101, 1101, 2101}
C = {0010, 0100, 0110, 1000, 1010, 1100, 1110, 1111, 2000, 2001, 2010, 2100, 2110, 2111}.

For the prior use the following probabilities:

p(d) 0 1 2
3
21

4
21

14
21

Estimate the näıve likelihood using the data, and for each of the following strings: {0000, 1001, 1011}

a. Compute the näıve Bayes probability that the string is a type-0 instance.
b. Compute the näıve Bayes probability that the string is a type-1 instance.
c. Compute the näıve Bayes probability that the string is a type-2 instance.
d. Give the most likely output for the string (assuming independence).

4

