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Abstract

Although Bayesian model averaging is the-
oretically the optimal method for combin-
ing learned models, it has seen very little
use in machine learning. In this paper we
study its application to combining rule sets,
and compare it with bagging and partition-
ing, two popular but more ad hoc alterna-
tives. Our experiments show that, surpris-
ingly, Bayesian model averaging’s error rates
are consistently higher than the other meth-
ods’. Further investigation shows this to be
due to a marked tendency to overfit on the
part of Bayesian model averaging, contradict-
ing previous beliefs that it solves (or avoids)
the overfitting problem.

1. Introduction

A learner’s error rate can often be much reduced
by learning several models instead of one, and then
combining them in some way to make predictions
(Drucker et al., 1994; Freund & Schapire, 1996; Quin-
lan, 1996; Maclin & Opitz, 1997; Bauer & Kohavi,
1999). In recent years a large number of more or less
ad hoc methods for this purpose have been proposed
and successfully applied, including bagging (Breiman,
1996a), boosting (Freund & Schapire, 1996), stacking
(Wolpert, 1992), error-correcting output codes (Kong
& Dietterich, 1995), and others. Bayesian learning
theory (Bernardo & Smith, 1994; Buntine, 1990) pro-
vides a potential explanation for their success, and
an optimal method for combining models. In the
Bayesian view, using a single model to make predic-
tions ignores the uncertainty left by finite data as to
which is the “correct” model; thus all possible models
in the model space under consideration should be used
when making predictions, with each model weighted
by its probability of being the “correct” model. This
posterior probability is the product of the model’s
prior probability, which reflects our domain knowledge
(or assumptions) before collecting data, and the like-

lihood, which is the probability of the data given the

model. This method of making predictions is called
Bayesian model averaging.

Given the “correct” model space and prior distribu-
tion, Bayesian model averaging is the optimal method
for making predictions; in other words, no other ap-
proach can consistently achieve lower error rates than
it does. Bayesian model averaging has been claimed
to obviate the overfitting problem, by “canceling out”
the effects of different overfitted models until only the
true “main” effect remains (Buntine, 1990). In spite of
this, it has not been widely used in machine learning
(some exceptions are Buntine (1990); Oliver and Hand
(1995); Ali and Pazzani (1996)). In this paper we ap-
ply it to the combination of rule models and find that,
surprisingly, it produces consistently higher error rates
than two ad hoc methods (bagging and partitioning).
Several possible causes for this are empirically rejected,
and we show that Bayesian model averaging performs
poorly because, contrary to previous belief, it is highly
sensitive to overfitting.

The next section briefly introduces the basic notions
of Bayesian theory, and their application to classifi-
cation problems. We then describe the experiments
conducted and discuss the results.

2. Bayesian Model Averaging in

Classification

In classification learning problems, the goal is to cor-
rectly predict the classes of unseen examples given
a training set of classified examples. Given a space
of possible models, classical statistical inference se-
lects the single model with highest likelihood given the
training data and uses it to make predictions. Mod-
ern Bayesian learning differs from this approach in
two main respects (Buntine, 1990; Bernardo & Smith,
1994; Chickering & Heckerman, 1997): the computa-
tion of posterior probabilities from prior probabilities
and likelihoods, and their use in model averaging. In
Bayesian theory, each candidate model in the model
space is explicitly assigned a prior probability, reflect-
ing our subjective degree of belief that it is the “cor-



rect” model, prior to seeing the data. Let n be the
training set size, ~x the examples in the training set,
~c the corresponding class labels, and h a model (or
hypothesis) in the model space H . Then, by Bayes’
theorem, and assuming the examples are drawn inde-
pendently, the posterior probability of h given (~x,~c) is
given by:

Pr(h|~x,~c) =
Pr(h)

Pr(~x,~c)

n
∏

i=1

Pr(xi, ci|h) (1)

where Pr(h) is the prior probability of h, and the prod-
uct of Pr(xi, ci|h) terms is the likelihood. The data

prior Pr(~x,~c) is the same for all models, and can thus
be ignored. In order to compute the likelihood it is
necessary to compute the probability of a class label
ci given an unlabeled example xi and a hypothesis h,
since Pr(xi, ci|h) = Pr(xi|h)Pr(ci|xi, h). This proba-
bility, Pr(ci|xi, h), can be called the noise model, and
is distinct from the classification model h, which sim-
ply produces a class prediction with no probabilities
attached.1

In the literature on computational learning theory, a
uniform class noise model is often assumed (see, e.g.,
Kearns and Vazirani (1994)). In this model, each ex-
ample’s class is corrupted with probability ε, and thus
Pr(ci|xi, h) = 1 − ε if h predicts the correct class ci

for xi, and Pr(ci|xi, h) = ε if h predicts an incorrect
class. Equation 1 then becomes:

Pr(h|~x,~c) ∝ Pr(h) (1 − ε)sεn−s (2)

where s is the number of examples correctly classified
by h, and the noise level ε can be estimated by the
models’ average error rate. An alternative approach
(Buntine, 1990) is to rely on the fact that, implicitly
or explicitly, every classification model divides the in-
stance space into regions, and labels each region with
a class. For example, if the model is a decision tree
(Quinlan, 1993), each leaf corresponds to a region. A
class probability can then be estimated separately for
each region, by making:

Pr(ci|xi, h) =
nr,ci

nr

(3)

where r is the region xi is in, nr is the total number
of training examples in r, and nr,ci

is the number of
examples of class ci in r.

Finally, an unseen example x is assigned to the class
that maximizes:

Pr(c|x, ~x,~c, H) =
∑

h∈H

Pr(c|x, h) Pr(h|~x,~c) (4)

1Since a classification model h does not predict the ex-
ample distribution Pr(xi|h), but only the class given xi,
Pr(xi|h) = Pr(xi), and is therefore the same for all mod-
els and can be ignored.

If a “pure” classification model is used, Pr(c|x, h) is
1 for the class predicted by h for x, and 0 for all oth-
ers. Alternatively, a model supplying class probabil-
ities such as those in Equation 3 can be used. Since
there is typically no closed form for Equation 4, and
the model space used typically contains far too many
models to allow the full summation to be carried out,
some procedure for approximating Equation 4 is neces-
sary. Since Pr(h|~x,~c) is often very peaked, using only
the model with highest posterior can be an acceptable
approximation. Alternatively, a sampling scheme can
be used. Two widely-used methods are importance
sampling (Bernardo & Smith, 1994) and Markov chain
Monte Carlo (Neal, 1993; Gilks et al., 1996).

3. Bayesian Model Averaging of

Bagged C4.5 Rule Sets

Bagging (Breiman, 1996a) is a simple and effective way
to reduce the error rate of many classification learning
algorithms. For example, in the empirical study de-
scribed below, it reduces the error of a rule learner in
19 of 26 databases, by 4% on average. In the bagging
procedure, given a training set of size s, a “bootstrap”
replicate of it is constructed by taking s samples with

replacement from the training set. Thus a new train-
ing set of the same size is produced, where each of the
original examples may appear once, more than once,
or not at all. The learning algorithm is then applied
to this sample. This procedure is repeated m times,
and the resulting m models are aggregated by uniform
voting (i.e., all models have equal weight).

Bagging can be viewed as a form of importance sam-
pling (Bernardo & Smith, 1994). Suppose we want
to approximate the sum (or integral) of a function
f(x)p(x) by sampling, where p(x) is a probability dis-
tribution. This is the form of Equation 4, with p(x)
being the model posterior probabilities. Since, given
a probability distribution q(x) (known as the impor-
tance sampling distribution),

∑

f(x)p(x) =
∑

f(x)

[

p(x)

q(x)

]

q(x) (5)

we can approximate the sum by sampling according to
q(x), and computing the average of f(xi)p(xi)/q(xi)
for the points xi sampled. Thus each sampled value
f(xi) will have a weight equal to the ratio p(xi)/q(xi).
In particular, if p(x) = q(x) all samples should be
weighed equally. This is what bagging does. Thus it
will be a good importance-sampling approximation of
Bayesian model averaging to the extent that the learn-
ing algorithm used to generate samples does so accord-
ing to the model posterior probability. Since most clas-
sification learners find a model by minimizing a func-



tion of the empirical error, and posterior probability
decreases with it, this is a reasonable hypothesis.2

Given that bagging can be viewed as an approximation
of Bayesian model averaging by importance sampling,
and the latter is the optimal prediction procedure,
then modifying bagging to more closely approximate
it should lead to further error reductions. One way to
do this is by noticing that in practice the probability
of the same model being sampled twice when sampling
from a very large model space is negligible. (This was
verified in the empirical study below, and has been
noted by many authors (e.g., Breiman (1996a); Char-
niak (1993).) In this case, weighting models by their
posteriors leads to a better approximation of Bayesian
model averaging than weighting them uniformly. This
can be shown as follows. With either method, the
models that were not sampled make the same con-
tribution to the error in approximating Equation 4, so
they can be ignored for purposes of comparing the two
methods. When weighting models by their posteriors
the error in approximating the terms that were sam-
pled is zero, because the exact values of these terms
are obtained (modulo errors in the Pr(c|x, h) factors,
which again are the same for both methods). With
uniform weights the error cannot be zero for all sam-
pled terms, unless they all have exactly the same pos-
terior. Thus the approximation error when using pos-
teriors as weights is less than or equal to the error
for uniform weights (with equality occurring only in
the very unlikely case of all equal posteriors). Note
that, unlike importance sampling, using the posteri-
ors as weights would not yield good approximations
of Bayesian model averaging in the large sample limit,
since it would effectively weight models by the square
of their posteriors. However, for the reasons above it
is clearly preferable for realistic sample sizes (e.g., the
10 to 100 models typically used in bagging and other
multiple model methods).

2Of course, this ignores a number of subtleties. One is
that, given such a learner, only models at local maxima
of the posterior will have a nonzero probability of being
selected. But since most of the probability mass is con-
centrated around these maxima (in the large-sample limit,
all of it), this is a reasonable approximation. Another sub-
tlety is that in this regime the probability of each locally
MAP model being selected depends on the size of its basin
of attraction in model space, not the amplitude of its pos-
terior. Thus we are implicitly assuming that higher peaks
of the posterior will typically have larger basins of attrac-
tion than lower ones, which is also reasonable. In any case,
none of what follows depends on these aspects of the ap-
proximation, since they will be equally present in all the
alternatives compared. Also, in Sections 5 and 6 we report
on experiments where the model space was exhaustively
sampled, making these considerations irrelevant.

Whether a better approximation of Bayesian model av-
eraging leads to lower errors can be tested empirically
by comparing bagging (i.e., uniform weights) with the
better approximation (i.e., models weighted by their
posteriors). In order to do this, a base learner is needed
to produce the component models. The C4.5 release 8
learner with the C4.5RULES postprocessor (Quinlan,
1993) was used for this purpose. C4.5RULES trans-
forms decision trees learned by C4.5 (Quinlan, 1993)
into rule sets, and tends to be slightly more accurate.
A non-informative, uniform prior was used. This is
appropriate, since all rule sets are induced in a similar
manner from randomly selected examples, and there
is thus no a priori reason to suppose one will be more
accurate than another.

Twenty-six databases from the UCI repository were
used (Blake & Merz, 2000). Bagging’s error rate was
compared with that obtained by weighting the mod-
els according to Equation 1, using both a uniform
class noise model (Equation 2) and Equation 3. Equa-
tion 4 was used in both the “pure classification” and
“class probability” forms described. Error was mea-
sured by ten-fold cross-validation. Every version of the
closer approximation of Bayesian model averaging per-
formed worse than “pure” bagging on a large majority
of the data sets (e.g., 19 out of 26), and worse on aver-
age. The best-performing combination was that of uni-
form class noise and “pure classification.” Results for
this version (labeled “BMA”), bagging and the single
model learned from the entire training set in each fold
are shown in Table 1. For this version, the experiments
were repeated with m = 10, 50, and 100, with similar
results. Inspection of the posteriors showed them to
be extremely skewed, with a single rule model typically
dominating to the extent of dictating the outcome by
itself. This occurred even though all models tended
to have similar error rates. In other words, Bayesian
model averaging effectively performed very little aver-
aging, acting more like a model selection mechanism
(i.e., selecting the most probable model from the m
induced).

4. Bayesian Model Averaging of

Partitioned RISE Rule Sets

The surprising results of the previous section might be
specific to the bagging procedure, and/or to the use
of C4.5 as the base learner. In order to test this, this
section reports similar experiments using a different
multiple model method (partitioning) and base learner
(RISE).

RISE (Domingos, 1996a) is a rule induction system
that assigns each test example to the class of the near-



Table 1. Bayesian model averaging of bagged C4.5 rule
sets: average error rates and their standard deviations.

Database Single Bagging BMA
Annealing 6.5±0.7 5.1±0.3 5.6±0.7
Audiology 26.5±2.8 23.0±2.1 24.0±2.3
Breast cancer 31.2±4.5 29.7±2.8 37.1±3.4
Credit 14.3±0.9 12.8±1.1 17.8±1.2
Diabetes 25.1±1.7 24.2±1.9 27.5±1.8
Echocardio 33.5±4.2 29.7±4.6 34.3±4.0
Glass 34.1±3.0 22.9±3.2 29.4±2.8
Heart 22.1±1.8 17.2±1.5 23.1±1.9
Hepatitis 19.9±4.2 16.0±4.2 22.5±4.3
Horse colic 16.3±1.3 14.0±1.7 16.7±1.7
Iris 5.3±1.7 5.3±1.7 6.7±2.0
LED 41.0±3.5 39.0±5.2 40.0±4.9
Labor 19.7±4.2 9.0±3.9 12.3±3.7
Lenses 20.0±6.9 23.3±6.7 26.7±7.9
Liver 33.4±2.1 25.8±2.1 33.0±2.2
Lung cancer 45.0±12.2 55.0±10.0 44.2±10.2
Lymphogr. 19.7±2.8 23.7±4.4 19.0±3.7
Post-oper. 31.1±6.2 37.8±6.0 34.4±5.9
Pr. tumor 59.0±2.3 56.3±2.1 56.3±1.7
Promoters 18.3±3.5 13.4±3.3 17.1±1.9
Solar flare 28.8±2.8 30.6±3.1 29.7±2.1
Sonar 24.6±2.8 19.7±2.8 27.3±3.2
Soybean 0.0±0.0 2.0±2.0 2.0±2.0
Voting 4.4±1.1 3.2±0.7 4.6±0.6
Wine 11.2±3.2 6.7±2.0 11.3±2.4
Zoo 9.9±3.0 9.0±3.1 7.0±2.6

est rule according to a similarity measure, and thus
implicitly partitions the instance space into the re-
gions won by each of the rules. Its learning time on
large databases can be much reduced by randomly par-
titioning the database into several smaller ones and
learning a model on each one separately (Domingos,
1996b). Partitioning can be viewed as an importance-
sampling approximation of Bayesian model averaging
in the same way that bagging can. Given an un-
seen example, partitioned RISE classifies it by letting
the multiple models induced vote, with each model’s
vote given by Equation 3 (with the Laplace correction
(Niblett, 1987; Good, 1965)). This approach was com-
pared with Bayesian model averaging (i.e., weighing
predictions by the posterior probabilities of the corre-
sponding models, using Equations 1 and 3) on eight
of the larger databases in the UCI repository. As with
bagging, and for similar reasons, uniform priors were
used. In the shuttle domain, the pre-defined training
and test sets (corresponding to different shuttle flights)
were used. For all other databases, ten runs were car-
ried out, in each run randomly dividing the data into

Table 2. Bayesian model averaging of partitioned RISE
rule sets: average error rates and their standard deviations.

Database Single Partitioning BMA
Credit 17.4±0.5 13.6±0.6 14.6±0.4
Diabetes 28.4±0.8 25.6±0.7 30.6±0.8
Annealing 2.5±0.3 6.4±0.5 8.8±0.5
Chess 1.6±0.2 5.5±0.2 6.1±0.3
Hypothyroid 2.1±0.1 3.0±0.1 3.3±0.3
Splice 7.5±0.3 5.0±0.2 6.8±0.4
Mushroom 0.0±0.0 1.1±0.0 6.8±0.4
Shuttle 0.0 0.5 0.7

two-thirds for training and one-third for testing. The
average error rates and their standard deviations are
shown in Table 2. The “Single” column shows the
error rate obtained by learning on the full database
at once, without partitioning. The next two columns
show the results obtained by learning on partitions of
100 examples each and combining the resulting models
using RISE’s method and Bayesian model averaging.

Model averaging produced higher error rates than
RISE’s method in every domain. As in the previous
section, inspection of the posteriors typically showed
a single rule model dominating to the extent of dictat-
ing the outcome by itself. Thus the observations that
were made for bagging C4.5 rule sets are also valid for
RISE with partitioning.

5. Bayesian Model Averaging of

Foreign Exchange Trading Rules

In the previous sections, Bayesian model averaging
could not be applied in its ideal form, due to the very
large number of possible models, and this might be
the reason for its disappointing performance. Con-
ceivably, if all the terms in Equation 4 were included,
the single most probable model would no longer dom-
inate to the point of single-handedly determining the
predictions made. This issue can be addressed by ap-
plying model averaging in model spaces that are suffi-
ciently restricted for the exact computation of Equa-
tion 4 to be feasible. One significant application where
these arise is foreign exchange prediction, where the
goal is to maximize the return from investing in a for-
eign currency by predicting whether it will rise or fall
against the US dollar. An approach that is used by
some traders, and that has been validated by large-
scale empirical studies (LeBaron, 1991), involves the
use of so-called technical rules of the form “If the s-
day moving average of the currency’s exchange rate
rises above the t-day one, buy; else sell.” The fact



Table 3. Percent five-year return on investment for four
currencies: German mark (DM), British pound (BP), Swiss
franc (SF), and Canadian dollar (CD).

Currency B&H Best Unif. BMA BMAP

DM 29.5 47.2 52.4 47.2 47.2
BP −7.0 7.9 19.5 7.9 8.3
SF 34.4 58.3 44.4 58.3 47.7
CD −8.3 −2.7 0.0 −5.0 −7.0

that there is clearly no single “right” rule of this type
suggests that the use of Bayesian model averaging is
appropriate. The choice of s and t, with t > s, can
be made empirically. If a maximum value tmax is set
for t (and, in practice, moving averages of more than
a month or so are never considered), the total num-
ber of possible rules is tmax(tmax − 1)/2. It is thus
possible to compare the return yielded by the single
most accurate rule with that yielded by averaging all

possible rules according to their posterior probabili-
ties. These are computed assuming a uniform prior on
rules/hypotheses and ignoring terms that are the same
for all rules (see Equation 1):

Pr(h|~x,~c) ∝

n
∏

i=1

Pr(ci|xi, h) (6)

Let the two classes be + (rise/buy) and − (fall/sell).
For each rule h, Pr(ci|xi, h) can take only four values:
Pr(+|+), Pr(−|+), Pr(+|−) and Pr(−|−). Let n−+

be the number of examples in the sample which are
of class − but for which rule h predicts +, and simi-
larly for the other combinations. Let n·+ be the total
number of examples for which h predicts +, and simi-
larly for n·−. Then, estimating probabilities from the
sample as in Equation 3:

P̂ r(h|~x,~c) ∝
(

n++

n
·+

)n++
(

n
−+

n
·+

)n
−+

(

n+−

n
·−

)n+−

(

n
−−

n
·−

)n
−−

(7)

Tests were conducted using daily data on five curren-
cies for the years 1973–87, from the Chicago Mercan-
tile Exchange (Weigend et al., 1992). The first ten
years were used for training (2341 examples) and the
remaining five for testing. A maximum t of two weeks
was used. The results for four currencies, in terms of
the five-year return on investment obtained, are shown
in Table 3. In the fifth currency, the Japanese yen, all
averaging methods led to zero return, due to the fact
that downward movements were in the majority for
all rules both when the rule held and when it did not,
leading the program to hold U.S. dollars throughout.
This reflects a limitation of making only binary pre-
dictions, and not of multiple model methods. The first

column of Table 3 shows the result of buying the for-
eign currency on the first day and holding it through-
out the five-year period. The second column corre-
sponds to applying the single best rule, and is a clear
improvement over the former. The remaining columns
show the results of applying various model averaging
methods.

Uniform averaging (giving the same weight to all rules)
produced further improvements over the single best
rule in all but one currency. However, Bayesian model
averaging (fourth column) produced results that were
very similar to that of the single best rule. Inspection
of the posteriors showed this to be due in each case
to the presence of a dominant peak in the (s, t) plane.
This occurs even though the rule error rates typically
differ by very little, and are very close to chance (er-
ror rates below 45% are rare in this extremely noisy
domain). Thus it is not the case that averaging over
all models in the space will make this phenomenon
disappear.

A further aspect in which the applications described
so far differ from the exact Bayesian procedure is that
averaging was only performed over the classification
models, and not over the parameters Pr(xi, ci|h) of the
noise model. The maximum-likelihood values of these
parameters were used in place of integration over the
possible parameter values weighted by their posterior
probabilities. For example, Pr(−|+) was estimated by
n
−+

n
·+

, but in theory integration over the [0, 1] interval

should be performed, with each probability weighted
by its posterior probability given the observed frequen-
cies. Although this is again a common approximation,
it might have a negative impact on the performance
of Bayesian model averaging. Bayesian averaging was
thus reapplied with integration over the probability
values, using uniform priors and binomial likelihoods.
This led to no improvement (“BMAP ” column). We
attribute this to the sample being large enough to con-
centrate most of the posterior’s volume around the
maximum-likelihood peak. This was confirmed by ex-
amining the curves of the posterior distributions.

6. Bayesian Model Averaging of

Conjunctions

Because the results of the previous section might be
specific to the foreign exchange domain, the following
experiment was carried out using artificially generated
Boolean domains. Classes were assigned at random to
examples described by a features. All conjunctions
of 3 of those features were then generated (a total of
a(a−1)(a−2)/6), and their posterior probabilities were
estimated from a random sample composed of half the



possible examples. The experiment was repeated ten
times for each of a = 7, 8, 9, . . . , 13. Because the class
was random, the error rate of both Bayesian model av-
eraging and the best conjunction3 was always approx-
imately 50%. However, even in this situation of pure
noise and no possible “right” conjunction, the poste-
rior distributions were still highly asymmetric (e.g.,
the average posterior excluding the maximum was on
average 14% of the maximum for a = 7, and decreased
to 6% for a = 13). As a result, Bayesian model av-
eraging still made the same prediction as the “best”
conjunction on average 83.9% of the time for a = 7,
decreasing to 64.4% for a = 13.4

7. The Overfitting Problem in Bayesian

Model Averaging

The observations of the previous sections all point to
the conclusion that Bayesian model averaging’s disap-
pointing results are not the effect of deviations from
the Bayesian ideal (e.g., sampling terms from Equa-
tion 4, or using maximum likelihood estimates of the
parameters), but rather stem from some deeper prob-
lem. In this section this problem is identified, and seen
to be a form of overfitting that occurs when Bayesian
averaging is applied.

The reason Bayesian model averaging produces very
skewed posteriors even when model errors are similar,
and as a result effectively performs very little averag-
ing, lies in the form of the likelihood’s dependence on
the sample. This is most easily seen in the case of a
uniform noise model. In Equation 2, the likelihood of
a model (1 − ε)sεn−s increases exponentially with the
proportion of correctly classified examples s/n. As a
result of this exponential dependence, even small ran-
dom variations in the sample will cause some hypothe-
ses to appear far more likely than others. Similar be-
havior occurs when Equation 3 is used as the noise
model, with the difference that each example’s con-
tribution to the likelihood’s exponential variation now
depends on the region the example is in, instead of
being the same for all examples. This behavior will
occur even if the “true” values of the noise parame-
ters are known exactly (ε in the uniform model, and
the Pr(xi, ci|h) values in Equation 3). The posterior’s
exponential sensitivity to the sample is a direct conse-

3Predicting the class with highest probability given that
the conjunction is satisfied when it is (estimated from the
sample), and similarly when it is not.

4This decrease was not due to a flattening of the poste-
riors as the sample size increased (the opposite occurred),
but to the class probabilities given the value of each con-
junction converging to the 50% limit.

quence of Bayes’ theorem and the assumption that the
examples are drawn independently, which is usually a
valid one in classification problems. Dependence be-
tween the examples will slow the exponential growth,
but will only make it disappear in the limit of all ex-
amples being completely determined by the first.

To see the impact of this exponential behavior, con-
sider any two of the conjunctions in the previous
section, h1 and h2. Using the notation of Sec-
tion 5, for each conjunction Pr(+|+) = Pr(−|+) =
Pr(+|−) = Pr(−|−) = 1

2
, by design. By Equation 6,

Pr(h1|~x,~c)/Pr(h2|~x,~c) = 1. In other words, given a
sufficiently large sample, the two conjunctions should
appear approximately equally likely. Now suppose
that: n = 4000; for conjunction h1, n++ = n−− =
1050 and n−+ = n+− = 950; and for conjunction h2,
n++ = n−− = 1010 and n−+ = n+− = 990. The
resulting estimates of P̂ r(+|+), . . . , P̂ r(−|−) for both
conjunctions are quite good; all are within 1% to 5%
of the true values. However, the estimated ratio of
conjunction posteriors is, by Equation 7:

P̂ r(h1|~x,~c)

P̂ r(h2|~x,~c)
=

(

1050
2000

)1050 (

950
2000

)950 (

950
2000

)950 (

1050
2000

)1050

(

1010
2000

)1010 (

990
2000

)990 (

990
2000

)990 (

1010
2000

)1010

' 120

In other words, even though the two conjunctions
should appear similarly likely and have similar weights
in the averaging process, h1 actually has a far greater
weight than h2; enough so, in fact, that Bayes-
averaging between h1 and 100 conjunctions with ob-
served frequencies similar to h2’s is equivalent to al-
ways taking only h1 into account. If only a single pa-
rameter Pr(±|±) were being estimated, a deviation
of 5% or more from a true value of 1

2
given a sample

of size 2000 would have a probability of p5% = 0.013
(binomial distribution, with p = 1

2
and n = 2000).

This is a reasonably small value, even if not necessar-
ily negligible. However, two independent parameters
are being estimated for each model in the space, and
the probability of a deviation of 5% or more in any
one parameter increases with the number of parame-
ters being estimated (exponentially if they are inde-
pendent). With a = 10, there are 120 conjunctions
of 3 Boolean features (Section 6), and thus 240 pa-
rameters to estimate. Assuming independence to sim-
plify, this raises the probability of a deviation of 5%
or more to 1 − (1 − p5%)240 ' 0.957. In other words,
it is highly likely to occur. In practice this value will
be smaller due to dependences between the conjunc-
tions, but the pattern is clear. In most applications,
the model space contains far more than 120 distinct
models; for most modern machine learning methods
(e.g., rule induction, decision-tree induction, neural



networks, instance-based learning), it can be as high as
doubly exponential in the number of attributes. Thus,
even if only a very small fraction of the terms in Equa-
tion 4 is considered, the probability of one term being
very large purely by chance is very high, and this out-
lier then dictates the behavior of Bayesian model av-
eraging. Further, the more terms that are sampled
in order to better approximate Equation 4, the more
likely such an outlier is to appear, and the more likely
(in this respect) Bayesian model averaging is to per-
form poorly.

This is an example of overfitting: preferring a hypoth-
esis that does not truly have the lowest error of any hy-
pothesis considered, but that by chance has the lowest
error on the training data (Mitchell, 1997). The obser-
vation that Bayesian model averaging is highly prone
to overfitting, the more so the better Equation 4 is
approximated, contradicts the common belief among
Bayesians that it solves the overfitting problem, and
that in the limit overfitting cannot occur if Equation 4
is computed exactly (see, e.g., Buntine (1990)). While
uniform averaging as done in bagging can indeed re-
duce overfitting by canceling out spurious variations
in the models (Rao & Potts, 1997), Bayesian model
averaging in effect acts more like model selection than
model averaging, and is equivalent to amplifying the
search process that produces overfitting in the under-
lying learner in the first place. Although overfitting
is often identified with inducing “overly complex” hy-
potheses, this is a superficial view: overfitting is the
result of attempting too many hypotheses, and conse-
quently finding a poor hypothesis that appears good
(Jensen & Cohen, in press). In this light, Bayesian
model averaging’s potential to aggravate the overfit-
ting problem relative to learning a single model be-
comes clear.

The net effect of Bayesian model averaging will de-
pend on which effect prevails: the increased overfitting
(small if few models are considered), or the reduction
in error potentially obtained by giving some weight
to alternative models (typically a small effect, given
Bayesian model averaging’s highly skewed weights).
While Buntine (1990) and Ali and Pazzani (1996) ob-
tained error reductions with Bayesian model averaging
in some domains, these were typically small compared
with those obtainable using uniform weights (whether
in bagging or using Buntine’s option trees, as done by
Kohavi and Kunz (1997)).5 Thus, the improvements
produced by multiple models in these references would
presumably have been greater if the model posteriors

5Note also that only one of the many variations of
Bayesian model averaging in Buntine (1990) consistently
reduced error.

had been ignored. The fact that, in the studies with
bagging reported in this article, Bayesian model aver-
aging generally did not produce even those improve-
ments may be attributable to the effect of a third fac-
tor: the fact that, when bootstrapping is used, each
model is effectively learned from a smaller sample,
while the multiple models in Buntine (1990) and Ali
and Pazzani (1996) were learned on the entire sample,
using variations in the algorithm.

Multiple model methods can be placed on a spec-
trum according to the asymmetry of the weights they
produce. Bagging is at one extreme, with uniform
weights, and never increases overfitting (Breiman,
1996b). Methods like boosting and stacking produce
weights that are more variable, and can sometimes
lead to overfitting (see, e.g., Margineantu and Diet-
terich (1997)). Bayesian model averaging is at the
opposite end of the spectrum, producing highly asym-
metric weights, and being correspondingly more prone
to overfitting.

8. Conclusions

This paper found that, contrary to previous belief,
Bayesian model averaging does not obviate the over-
fitting problem in classification, and may in fact ag-
gravate it. Bayesian averaging’s tendency to overfit
derives from the likelihood’s exponential sensitivity to
random fluctuations in the sample, and increases with
the number of models considered. The problem of suc-
cessfully applying it in machine learning remains an
open one.
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