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Bayesian Model Averaging: A Tutorial
Jennifer A. Hoeting, David Madigan, Adrian E. Raftery and Chris T. Volinsky

Abstract. Standard statistical practice ignores model uncertainty. Data
analysts typically select a model from some class of models and then
proceed as if the selected model had generated the data. This approach
ignores the uncertainty in model selection, leading to over-confident in-
ferences and decisions that are more risky than one thinks they are.
Bayesian model averaging (BMA) provides a coherent mechanism for ac-
counting for this model uncertainty. Several methods for implementing
BMA have recently emerged. We discuss these methods and present a
number of examples. In these examples, BMA provides improved out-of-
sample predictive performance. We also provide a catalogue of currently
available BMA software.
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1. INTRODUCTION

Consider the following scenario: a researcher has
gathered data concerning cancer of the esophagus.
For each of a large number of patients, she has
recorded a variety of demographic and medical co-
variates, along with each patient’s last known sur-
vival status. She would like to assess the size of
each covariate’s effect on survival time with a view
to designing future interventions, and, additionally,
would like to be able to predict the survival time
for future patients. She decides to use proportional
hazards regression models to analyze the data. Next
she conducts a data-driven search to select covari-
ates for the specific proportional hazards regression
model,M∗� that will provide the framework for sub-
sequent inference. She checks that M∗ fits the data
reasonably well and notes that the parameter esti-
mates are sensible. Finally, she proceeds to use M∗

to estimate effect sizes and associated standard er-
rors and make predictions.
This may approximate standard statistical prac-

tice, but is it entirely satisfactory? Suppose there ex-
ists an alternative proportional hazards model,M∗∗,
that also provides a good fit to the data but leads
to substantively different estimated effect sizes, dif-
ferent standard errors, or different predictions? In
this situation, how should the researcher proceed?
Models like M∗∗ are commonplace: for striking ex-
amples see Regal and Hook (1991), Draper (1995),
Madigan and York (1995), Kass and Raftery (1995),
and Raftery (1996). Basing inferences on M∗ alone
is risky; presumably, ambiguity about model selec-
tion should dilute information about effect sizes and
predictions, since “part of the evidence is spent to
specify the model” (Leamer, 1978, page 91). Draper
et al. (1987) and Hodges (1987) make essentially the
same observation.
Bayesian model averaging provides a way around

this problem. If � is the quantity of interest, such
as an effect size, a future observable, or the utility

of a course of action, then its posterior distribution
given data D is

pr�� �D� =
K∑
k=1

pr�� �Mk�D�pr�Mk �D��(1)

This is an average of the posterior distributions un-
der each of the models considered, weighted by their
posterior model probability. In (1), M1� � � � �MK are
the models considered. The posterior probability for
model Mk is given by

pr�Mk �D� =
pr�D �Mk�pr�Mk��K
l=1 pr�D �Ml�pr�Ml�

�(2)

where

pr�D �Mk� =
∫
pr�D � θk�Mk�pr�θk �Mk�dθk(3)

is the integrated likelihood of model Mk, θk is the
vector of parameters of model Mk (e.g., for regres-
sion θ = �β�σ2�), pr�θk �Mk� is the prior density of
θk under modelMk, pr�D � θk�Mk� is the likelihood,
and pr�Mk� is the prior probability that Mk is the
true model (given that one of the models considered
is true). All probabilities are implicitly conditional
on � , the set of all models being considered.
The posterior mean and variance of � are as fol-

lows:

E�� �D� =
K∑
k=0

�̂kpr�Mk �D��

Var�� �D� =
K∑
k=0

(
Var�� �D�Mk� + �̂2k

)
pr�Mk �D�

−E�� �D�2�
where �̂k = E�� �D�Mk� (Raftery, 1993; Draper
1995).
Madigan and Raftery (1994) note that averaging

over all the models in this fashion provides better
average predictive ability, as measured by a loga-
rithmic scoring rule, than using any single model
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Mj, conditional on � . Considerable empirical evi-
dence now exists to support this theoretical claim;
in Section 7 we will present some of this evidence.
While BMA is an intuitively attractive solution to

the problem of accounting for model uncertainty, it
is not yet part of the standard data analysis tool kit.
This is, in part, due to the fact that implementation
of BMA presents several difficulties, discussed in
the sections of this paper as noted:

• The number of terms in (1) can be enormous,
rendering exhaustive summation infeasible (Sec-
tion 3.1).
• The integrals implicit in (1) can in general be

hard to compute. Markov chain Monte Carlo meth-
ods have partly overcome the problem, but challeng-
ing technical issues remain (Section 3.2).
• Specification of pr�Mk�, the prior distribution

over competing models, is challenging and has re-
ceived little attention (Section 5).
• After these difficulties are overcome, choosing

the class of models over which to average becomes
the fundamental modeling task. At least three com-
peting schools of thought have emerged (Section 8).

This paper will provide a tutorial introduction to
BMA and discuss several solutions to these imple-
mentation difficulties. We will also briefly discuss
related work.

2. COMBINING MODELS: A
HISTORICAL PERSPECTIVE

Barnard (1963) provided the first mention of
model combination in the statistical literature in
a paper studying airline passenger data. However,
most of the early work in model combination was
not in statistical journals. The seminal forecast-
ing paper by Bates and Granger (1969) stimulated
a flurry of articles in the economics literature of
the 1970s about combining predictions from dif-
ferent forecasting models. See Clemen (1989) for a
detailed review.
In the statistical literature, early work related

to model averaging includes Roberts (1965), who
suggested a distribution which combines the opin-
ions of two experts (or models). This distribution,
essentially a weighted averaged of posterior distri-
butions of two models, is similar to BMA. Leamer
(1978) expanded on this idea and presented the
basic paradigm for BMA. He also pointed out the
fundamental idea that BMA accounts for the un-
certainty involved in selecting the model. After
Leamer’s book was published, little attention was
given to BMA for some time. The drawbacks of ig-
noring model uncertainty were recognized by many

authors (e.g., the collection of papers edited by
Dijkstra, 1988), but little progress was made until
new theoretical developments and computational
power enabled researchers to overcome the diffi-
culties related to implementing BMA (Section 1).
George (1999) reviews Bayesian model selection
and discusses BMA in the context of decision the-
ory. Draper (1995), Chatfield (1995), and Kass and
Raftery (1995) all review BMA and the costs of ig-
noring model uncertainty. These papers focus more
on Bayesian interpretation, whereas in this pa-
per we will emphasize implementation and other
practical matters.

3. IMPLEMENTING BAYESIAN
MODEL AVERAGING

In this section, we discuss general implementa-
tion issues for BMA. In Section 4, we will discuss
specific model classes.

3.1 Managing the Summation

The size of interesting model classes often renders
the exhaustive summation of (1) impractical. We de-
scribe two distinct approaches to this problem.
The first approach is to average over a subset of

models that are supported by the data. The Occam’s
window method of Madigan and Raftery (1994) av-
erages over a set of parsimonious, data-supported
models, selected by applying standard norms of sci-
entific investigation.
Two basic principles underly the Occam’s window

method. First, Madigan and Raftery (1994) argued
that if a model predicts the data far less well than
the model which provides the best predictions, then
it has effectively been discredited and should no
longer be considered. Thus models not belonging to

� ′ =
{
Mk

maxl�pr�Ml �D��
pr�Mk �D�

≤ C

}
�(4)

should be excluded from (1) where C is chosen by
the data analyst. Their second, optional, principle,
appealing to Occam’s razor, led them to exclude com-
plex models which receive less support from the
data than their simpler counterparts. More formally,
they also exclude from (1) models belonging to:

� =
{
Mk ∃Ml ∈ � ′�Ml ⊂Mk�

pr�Ml �D�
pr�Mk �D�

> 1
}(5)

and (1) is replaced by

pr�� �D� = ∑
Mk∈�

pr�� �Mk�D�pr�Mk �D��(6)
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where � = � ′\� and all probabilities are implic-
itly conditional on the set of models in � .
This greatly reduces the number of models in

the sum in (1) and now all that is required is
a search strategy to identify the models in � .
Madigan and Raftery (1994) proposed one possi-
ble search strategy, based on two main ideas. First,
when the algorithm compares two nested mod-
els and decisively rejects the simpler model, then
all submodels of the simpler model are rejected.
The second idea, “Occam’s window,” concerns the
interpretation of the ratio of posterior model proba-
bilities pr�M0 �D�/pr�M1 �D�. HereM0 is “smaller”
than M1. The essential idea is shown in Figure 1:
If there is evidence for M0 then M1 is rejected, but
rejecting M0 requires strong evidence for the larger
model,M1. If the evidence is inconclusive (falling in
Occam’s window), neither model is rejected. Madi-
gan and Raftery (1994) adopted 1/20 and 1 for
OL and OR, respectively (see Figure 1). Raftery,
Madigan and Volinsky (1996) show that adopting
1/20 and 20 for OL and OR, respectively, may pro-
vide improved predictive performance; this specifies
OL = O−1

R which amounts to using only the first
Occam’s window principle and not the second one.
These principles fully define the strategy. In most

model classes the number of terms in (1) is typi-
cally reduced to fewer than 100 models and often to
fewer than 10; a reduction to one or two models is
not unusual. Madigan and Raftery (1994) provide a
detailed description of the algorithm.
Another way to search for the models in � is sug-

gested by Volinsky, Madigan, Raftery and Kronmal
(1997). They use the “leaps and bounds” algorithm
(Furnival and Wilson, 1974) to rapidly identify mod-
els to be used in the summation of (1).
The second approach, Markov chain Monte Carlo

model composition (MC3), uses a Markov chain
Monte Carlo method to directly approximate (1)
(Madigan and York, 1995). Specifically, let � de-
note the space of models under consideration. One
can construct a Markov chain �M�t��� t = 1�2� � � �
with state space � and equilibrium distribution
pr�Mi � D� and simulate this Markov chain to ob-
tain observations M�1�� � � � �M�N�. Then for any

Fig. 1. Occam’s window: interpreting the posterior odds.

function g�Mi� defined on � , the average

Ĝ = 1
N

N∑
t=1

g�M�t��(7)

is an estimate of E�g�M��. Applying standard
Markov chain Monte Carlo results,

Ĝ→ E�g�M�� a�s� as N→∞
(e.g., Smith and Roberts, 1993). To compute (1) in
this fashion set g�M� = pr�� �M�D�.
To construct the Markov chain, define a neigh-

borhood nbd�M� for each M ∈ � . For example,
with graphical models the neighborhood might be
the set of models with either one link more or one
link fewer than M, plus the model M itself (Madi-
gan et al., 1994). Define a transition matrix q by
setting q�M → M′� = 0 for all M′ �∈ nbd�M� and
q�M → M′� nonzero for all M′ ∈ nbd�M�. If the
chain is currently in state M, proceed by drawing
M′ from q�M → M′�. M′ is accepted with prob-
ability

min
{
1�
pr�M′ �D�
pr�M �D�

}
�

Otherwise the chain remains in stateM. For a basic
introduction to the Metropolis–Hastings algorithm,
see Chib and Greenberg (1995).
MC3 offers considerable flexibility. For example,

working with equivalence classes of graphical mod-
els, Madigan, Andersson, Perlman and Volinsky
(1996a) introduced a total ordering of the vertices
into the stochastic process as an auxiliary vari-
able, thereby providing a three-fold computational
speed-up (see Section 4.4). York, Madigan, Heuch
and Lie (1995) incorporated missing data and a
latent variable into their MC3 scheme. For linear
models, Raftery, Madigan and Hoeting (1997) ap-
plied MC3 to average across models with many
predictors. However, as with other Markov chain
Monte Carlo methods, convergence issues can be
problematic.
The stochastic search variable selection (SSVS)

method of George and McCulloch (1993) is similar
in spirit to MC3. In SSVS, a predictor is not actually
removed from the full model; instead these predic-
tors are set close to zero with high probability. A
Markov chain Monte Carlo procedure is then used
to move through model space and parameter space
at the same time.
Clyde, DeSimone and Parmigiani (1996) intro-

duced an importance sampling strategy based on a
reexpression of the space of models in terms of an
orthogonalization of the design matrix. Their goal
is to implement model mixing for problems with
many correlated predictors. One advantage to this
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approach is that orthogonalizing can reduce the
number of competing plausible models. When or-
thgonalized model mixing is appropriate, it can be
much more efficient than MC3.
Earlier related work includes Stewart (1987) who

used importance sampling to average across logis-
tic regression models, and Carlin and Polson (1991)
who used Gibbs sampling to mix models with dif-
ferent error distributions. Besag, Green, Higdon
and Mengerson (1995, Section 5.6) use a Markov
chain Monte Carlo approach to average across fam-
ilies of t-distributions. Buntine (1992) applied BMA
to classification trees (CART). Rather than aver-
age over all possible trees, his algorithm seeks out
trees with high posterior probability and averages
over those. Earlier related work includes Kwok and
Carter (1990).
Stochastic methods that move simultaneously in

model space and parameter space open up a limit-
less range of applications for BMA. Since the dimen-
sionality of the parameter space generally changes
with the model, standard methods do not apply.
However, recent work by Carlin and Chib (1993),
Philips and Smith (1994) and Green (1995) provides
potential solutions.

3.2 Computing Integrals for BMA

Another difficulty in implementing BMA is that
the integrals of the form (3) implicit in (1) can be
hard to compute. For certain interesting classes
of models such as discrete graphical models (e.g.,
Madigan and York, 1995) and linear regression (e.g.,
Raftery, Madigan and Hoeting, 1997), closed form
integrals for the marginal likelihood, (3), are avail-
able. The Laplace method (Tierney and Kadane,
1986) can provide an excellent approximation to
pr�D �Mk�; in certain circumstances this yields the
very simple BIC approximation (Schwarz, 1978;
Kass and Wasserman 1995; Raftery, 1995). Taplin
(1993) suggested approximating pr�� �Mk�D� by
pr�� �Mk� θ̂�D� where θ̂ is the maximum likeli-
hood estimate of the parameter vector θ; we refer
to this as the “MLE approximation.” Draper (1995),
Raftery, Madigan and Volinsky (1996) and Volinsky
et al. (1997) show its usefulness in the BMA con-
text. Section 4 discusses these approximations in
more detail in the context of specific model classes.

4. IMPLEMENTATION DETAILS FOR SPECIFIC
MODEL CLASSES

In this section we describe the implementation of
the general strategy of the last section for specific
model classes.

4.1 Linear Regression: Predictors, Outliers
and Transformations

The selection of subsets of predictor variables is
a basic part of building a linear regression model.
The objective of variable selection is typically stated
as follows: given a dependent variable Y and a set
of a candidate predictorsX1� � � � �Xk, find the “best”
model of the form

Y = β0 +
p∑

j=1
βij

Xij
+ ε�

where Xi1
� � � � �Xip

is a subset of X1� � � � �Xk. Here
“best” may have any of several meanings, for exam-
ple, the model providing the most accurate predic-
tions for new cases exchangeable with those used to
fit the model.
BMA, on the other hand, seeks to average over

all possible sets of predictors. Raftery, Madigan and
Hoeting (1997) provide a closed form expression
for the likelihood, an extensive discussion of hy-
perparameter choice in the situation where little
prior information is available, and BMA imple-
mentation details for both Occam’s window and
MC3. Fernández, Ley and Steel (1997, 1998) offer
an alternative prior structure aiming at a more
automatic choice of hyperparameters.
Hoeting, Raftery and Madigan (1996, 1999); here-

after HRM96 and HRM99, extend this framework to
include transformations and outliers, respectively.
Largely for reasons of convenience, HRM99 used the
Box–Cox class of power transformations for the re-
sponse. The Box–Cox class of power transformations
changes the problem of selecting a transformation
into one of estimating a parameter. The model is
Y�ρ� =Xβ+ ε where ε ∼N�0� σ2I� and

Y�ρ� =


yρ − 1

ρ
� ρ �= 0,

log�y�� ρ = 0.

While the class of power transformations is math-
ematically appealing, power transformations typi-
cally do not have a biological or physical interpreta-
tion unless they are limited to a few possible values
of ρ. HRM99 averaged over the values (−1, 0, 0.5,
1), so that the transformed predictors can be inter-
preted as the reciprocal, the logarithm, the square
root and the untransformed response.
For transformation of the predictors, HRM99

proposed a novel approach consisting of an ini-
tial exploratory use of the alternating conditional
expectation algorithm (ACE), followed by change
point transformations if needed. The ACE algo-
rithm (Breiman and Friedman, 1985) provides
nonlinear, nonparametric transformations of the
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variables in a regression model. ACE chooses the
transformations to maximize the correlation be-
tween the transformed response and the sum of
the transformed predictors. HRM99 used ACE to
suggest parametric transformations of the predic-
tors. The transformations suggested by ACE often
have roughly the form of a change point, a thresh-
old or a saturation effect, with no change in the
expected value of the response above (or below)
a certain value. This type of transformation often
better describes the assumed physical or biologi-
cal context of the experiment than the commonly
used power transformations discussed above. To
choose the change point and to determine the ev-
idence for the change point, HRM99 provided an
approximate Bayes factor. HRM99’s BMA averages
over all predictor transformations for which the
evidence exceeds a user-specified level. This is ac-
complished simply by including the transformed
predictors as extra covariates for consideration in
potential models.
HRM96 averaged over sets of predictors and pos-

sible outliers. They adopted a variance–inflation
model for outliers as follows: Let Y =Xβ+ε where
the observed data on the predictors are contained
in the n × �p + 1� matrix X and the observed data
on the dependent variable are contained in the
n-vector Y. They assumed that the ε’s in distinct
cases are independent where

ε ∼
{
N
(
0� σ2) � w�p� �1− π��

N
(
0�K2σ2) � w�p� π�

(8)

Here π is the probability of an outlier andK2 is the
variance–inflation parameter.
Their simultaneous variable and outlier selec-

tion (SVO) method involves two steps. In a first
exploratory step they used a highly robust tech-
nique to identify a set of potential outliers. The
robust approach typically identifies a large number
of potential outliers. In the second step, HRM96
computed all possible posterior model probabilities
or used MC3, considering all possible subsets of the
set of potential outliers. This two–step method is
computationally feasible, and it allows for groups
of observations to be considered simultaneously as
potential outliers. HRM96 provided evidence that
SVO successfully identifies masked outliers. A si-
multaneous variable, transformation, and outlier
selection approach (SVOT) which combines SVO
and SVT has also been proposed (Hoeting, 94). A
faster but less exact implementation of BMA for
variable selection in linear regression via the leaps-
and-bound algorithm is available in the BICREG
software (Section 4.5).

4.2 Generalized Linear Models

Model-building for generalized linear models in-
volves choosing the independent variables, the link
function and the variance function (McCullagh and
Nelder, 1989). Each possible combination of choices
defines a different model. Raftery (1996) presents
methods for calculating approximate Bayes factors
for generalized linear models. The Bayes factor,
B10 for a model M1 against another model M0
given data D, is the ratio of posterior to prior odds,
namely,

B10 = pr�D �M1�/pr�D �M0��
the ratio of the marginal likelihoods. The Bayes fac-
tors, in turn, yield posterior model probabilities for
all the models, and enable BMA, as follows. Sup-
pose that �K+ 1� models, M0�M1� � � � �MK, are be-
ing considered. Each of M1� � � � �MK is compared in
turn with M0, yielding Bayes factors B10� � � � �BK0.
Then the posterior probability of Mk is

pr�Mk �D� = αkBk0

/ K∑
r=0

αrBr0�(9)

where αk = pr�Mk�/pr�M0� is the prior odds forMk

against M0 (k = 0� � � � �K).
Raftery’s derivation proceeds as follows. Suppose

that Yi is a dependent variable and that Xi =
�xi1� � � � � xip� is a corresponding vector of indepen-
dent variables, for i = 1� � � � � n. A generalized lin-
ear model M1 is defined by specifying pr�Yi �Xi�β�
in such a way that E�Yi �Xi� = µi, Var �Yi �Xi� =
σ2v�µi� and g�µi� =Xiβ, where β = �β1� � � � � βp�T;
here g is called the link function. The n × p ma-
trix with elements xij is denoted by X, and it is
assumed that xi1 = 1 �i = 1� � � � � n�. Here we as-
sume that σ2 is known; Raftery (1996) deals with
the unknown σ2 case.
Consider the Bayes factor for the null model M0,

defined by setting βj = 0 �j = 2� � � � � p�, against
M1. The likelihoods for M0 and M1 can be written
down explicitly, and so, once the prior has been fully
specified, the following (Laplace) approximation can
be computed:

p�D �Mk� ≈ �2π�pk/2 �+ � 1/2

· pr�D � β̃k�Mk�pr�β̃k �Mk��
(10)

where pk is the dimension of βk, β̃k is the posterior
mode of βk and +k is minus the inverse Hessian of
h�βk� = log�pr�D �βk�Mk�pr�βk �Mk��, evaluated
at βk = β̃k. Arguments similar to those in the Ap-
pendix of Tierney and Kadane (1986) show that in
regular statistical models the relative error in (10),
and hence in the resulting approximation to B10, is
O�n−1�.
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However, this approximation is not easy to com-
pute for generalized linear models using readily
available software and Raftery (1996) presents
three convenient but less accurate approximations.
We reproduce here the most accurate of these
approximations.
Suppose that the prior distribution of βk is such

that E�βk �Mk� = ωk and Var �βk �Mk� =Wk. Then
approximating the posterior mode, β̃k, by a single
step of the Newton–Raphson algorithm (e.g., Kin-
caid and Cheney, 1991, page 26) starting from the
MLE, β̂k, and substituting the result into (10) yields
the approximation

2 logB10 ≈ χ2 + �E1 −E0��(11)

In (11), χ2 = 2�01�β̂1� − 00�β̂0��, where 0k�β̂k� =
log �pr�D �βk�Mk�� is the log-likelihood whenM0 is
nested withinM1 and χ2 is the standard likelihood-
ratio test statistic. Also,

Ek = 2λk�β̂k� + λ′k�β̂k�T�Fk +Gk�−1

· �2−Fk�Fk +Gk�−1�λ′k�β̂k�
− log �Fk +Gk � + pk log�2π��

whereFk is the expected Fisher information matrix,
Gk = W−1

k , λk�βk� = log pr�βk �Mk� is the log-prior
density, and λ′k�β̂k� is the pk-vector of derivatives of
λk�βk� with respect to the elements of βk (k = 0�1).
In general, the relative error in this approximation
is O�n−1/2�. However, if the canonical link function
is used, the observed Fisher information is equal to
the expected Fisher information, and the relative
error improves to O�n−1�.
Raftery (1996) describes a useful parametric form

for the prior parameters ωk and Wk that involves
only one user-specified input and derives a way of
choosing this when little prior information is avail-
able. The prior distribution for β has three user-
specified parameters and Raftery (1996) discusses
possible choices in the situation where little prior
information is available.

4.3 Survival Analysis

Methods for analyzing survival data often focus
on modeling the hazard rate. The most popular way
of doing this is to use the Cox proportional hazards
model (Cox, 1972), which allows different hazard
rates for cases with different covariate vectors and
leaves the underlying common baseline hazard rate
unspecified. The Cox model specifies the hazard rate
for subject i with covariate vector Xi to be

λ�t �Xi� = λ0�t� exp�Xiβ��(12)

where λ0�t� is the baseline hazard function at time
t, and β is a vector of unknown parameters.

The estimation of β is commonly based on the
partial likelihood, namely,

PL�β� =
n∏
i=1

(
exp�Xiβ��

0∈Ri
exp�XT

0 β�

)wi

�

where Ri is the risk set at time ti (i.e., the set of
subjects who have not yet experienced an event),
and wi is an indicator for whether or not patient i
is censored.
Since the integrals required for BMA do not have

a closed–form solution for Cox models, Raftery,
Madigan and Volinsky (1996) and Volinsky et al.
(1997), VMRK hereafter, adopted a number of ap-
proximations. In particular, VMRK used the MLE
approximation,

pr�� �Mk�D� ≈ pr�� �Mk� β̂k�D��
and the Laplace approximation,

log pr�D �Mk� ≈ log pr�D � β̂k�Mk�
− dk log n�

(13)

where dk is the dimension of βk. This is the
Bayesian information criterion (BIC) approxima-
tion. In (13), n is usually taken to be the total
number of cases. Volinsky (1997) provides evidence
that n should be the total number of uncensored
cases (i.e., deaths or events).
To implement BMA for Cox models, VMRK used

an approach similar to the Occam’s window method
described in Section 3.1. To efficiently identify good
models, VMRK adapted the “leaps and bounds” al-
gorithm of Furnival and Wilson (1974) which was
originally created for linear regression model selec-
tion. The leaps and bounds algorithm provides the
top q models of each model size, where q is desig-
nated by the user, plus the MLE β̂k, var(β̂k), and
R2

k for each model Mk returned. Lawless and Sing-
hal (1978) and Kuk (1984) provided a modified al-
gorithm for nonnormal regression models that gives
an approximate likelihood ratio test statistic and
hence an approximate BIC value.
As long as q is large enough, this procedure re-

turns the models in Occam’s window (� ) plus many
models not in � . VMRK used the approximate like-
lihood ratio test to reduce the remaining subset of
models to those most likely to be in � . This reduc-
tion step keeps only the models whose approximate
posterior model probabilities fall within a factor C′

of the model with the highest posterior model prob-
ability, where C′ is greater than C, the cut-off in (4).
(VMRK setC′ = C2 and almost no models in� were
lost in the examples they considered). A standard
survival analysis program can then analyze the re-
maining models, calculate the exact BIC value for
each one, and eliminate those models not in � .
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For the models in � , VMRK calculated posterior
model probabilities by normalizing over the model
set, as in (9). Model-averaged parameter estimates
and standard errors of those estimates derive from
weighted averages of the estimates and standard er-
rors from the individual models, using the posterior
model probabilities as weights. The posterior prob-
ability that a regression coefficient for a variable is
nonzero (“posterior effect probability”) is simply the
sum of posterior probabilities of the models which
contain that variable. In the context of a real ex-
ample based on the Cardiovascular Health Study
(Fried et al., 1991), VMRK showed that these poste-
rior effect probabilities can lead to substantive inter-
pretations that are at odds with the usual p-values.
Prior probabilities on both model space and pa-

rameter space are implicitly defined by this pro-
cedure. All models are considered equally likely a
priori by the leaps and bounds algorithm. Using
the BIC approximation to the integrated likelihood
defines an inherent prior on all of the regression
parameters, as outlined in Kass and Wasserman
(1995). This prior is a sensible one to take in the
absence of substantial prior information; it is a nor-
mal distribution centered at the null hypothesized
value (usually 0) with the amount of information in
the prior equal to the average amount of informa-
tion in one observation.

4.4 Graphical Models: Missing Data and Auxiliary
Variables

A graphical model is a statistical model embody-
ing a set of conditional independence relationships
that can be summarized by means of a graph. To
date, most graphical models research has focused
on acyclic digraphs, chordal undirected graphs and
chain graphs that allow both directed and undi-
rected edges, but have no partially directed cycles
(Lauritzen, 1996).
Here we focus on acyclic directed graphs (ADGs)

and discrete random variables. In an ADG, all the
edges are directed and are shown as arrows (see,
e.g., Figure 2). A directed graph is acyclic if it con-
tains no directed cycles. Each vertex in the graph
will correspond to a random variable Xv� v ∈ V
taking values in a sample space �v. To simplify no-
tation, we use v in place ofXv in what follows. In an
ADG, the parents of a vertex v, pa�v�, are those ver-
tices from which edges point into v. The descendants
of a vertex v are the vertices which are reachable

Fig. 2. A simple discrete graphical model.

from v along a directed path. The parents are taken
to be the only direct influences on v, so that v is in-
dependent of its nondescendants given its parents.
This property implies a factorization of the joint dis-
tribution of Xv� v ∈ V, which we denote by pr�V�,
given by

pr�V� = ∏
v∈V

pr�v �pa�v���(14)

Figure 2 shows a simple example. This directed
graph represents the assumption that C and A are
conditionally independent givenB. The joint density
of the three variables factors accordingly,

pr�A�B�C� = pr�A�pr�B �A�pr�C �B��(15)

Spiegelhalter and Lauritzen (1990) showed how
independent Dirichlet prior distributions placed
on these probabilities can be updated locally to
form posterior distributions as data become avail-
able. Heckerman, Geiger and Chickering (1994)
provided corresponding closed-form expressions
for complete-data likelihoods and posterior model
probabilities.
The application of BMA and Bayesian graphical

models to problems involving missing data and/or
latent variables generally requires the use of either
analytical or numerical approximations. Madigan
and York (1995) and York et al. (1995) provide ex-
tensive implementation details. An especially useful
approach derives from the following reexpression of
the usual Bayes factor comparing two models, M0
and M1:

pr�D �M0�
pr�D �M1�

= E
(
pr�D�Z �M0�
pr�D�Z �M1�

∣∣∣∣D�M1

)
�

Here the expectation is over Z, which denotes the
missing data and/or latent variables. This expecta-
tion can be numerically approximated by simulating
the missing data from its predictive distribution un-
der only one of the two models being compared. A
similar formula appears in Thompson and Wijsman
(1990) and its use in the present context was sug-
gested by Augustine Kong.

4.5 Software for BMA

Software to implement several of the approaches
described above is available on the internet.
These programs, all written in S-Plus c©, can
be obtained free of charge via the Web address
www.research.att.com/∼volinsky/bma.html.
bic.glm performs BMA for generalized linear mod-
els using the leaps and bounds algorithm and the
BIC approximation. (Volinsky).

bic.logit performs Bayesian model selection and
accounting for model uncertainty using the BIC
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approximation for logistic regression models
(Raftery).

bicreg does Bayesian model selection and account-
ing for model uncertainty in linear regression
models using the BIC approximation (Raftery).

bic.surv does BMA for proportional hazard models
using the BIC approximation (Volinsky).

BMA implements the MC3 algorithm for linear re-
gression models (Hoeting).

glib carries out Bayesian estimation, model com-
parison and accounting for model uncertainty in
generalized linear models, allowing user-specified
prior distributions (Raftery).

5. SPECIFYING PRIOR MODEL PROBABILITIES

Before implementing any of the BMA strategies
described above, prior model probabilities must be
assigned for (2). When there is little prior informa-
tion about the relative plausibility of the models
considered, the assumption that all models are
equally likely a priori is a reasonable “neutral”
choice. However, Spiegelhalter, Dawid, Lauritzen
and Cowell (1993) and Lauritzen, Thiesson and
Spiegelhalter (1994) provide a detailed analysis of
the benefits of incorporating informative prior dis-
tributions in Bayesian knowledge-based systems
and demonstrate improved predictive performance
with informative priors.
When prior information about the importance of

a variable is available for model structures with a
coefficient associated with each predictor (e.g., lin-
ear regression models and Cox proportional hazards
models), a prior probability on model Mi can be
specified as

pr�Mi� =
p∏

j=1
πj

δij �1− πj�1−δij �(16)

where πj ∈ �0�1� is the prior probability that βj �= 0
in a regression model, and δij is an indicator of
whether or not variable j is included in model Mi.
Assigning πj = 0�5 for all j corresponds to a uni-
form prior across model space, while πj < 0�5 for all
j imposes a penalty for large models. Using πj = 1
ensures that variable j is included in all models.
This approach is used to specify model priors for
variable selection in linear regression in George and
McCulloch (1993) and suggested for model priors for
BMA in Cox models in VMRK.
In the context of graphical models, Madigan and

Raftery (1995) and others have suggested eliciting
a prior probability for the presence of each potential
link and then multiplying these probabilities to pro-
vide the required prior distribution. This approach
is similar to (16). However, both approaches make

the possibly unreasonable assumption that the pres-
ence or absence of each component (variable or link)
is independent a priori of the presence or absence of
other components.
Madigan, Gavrin and Raftery (1995) provide a

simple method for informative prior elicitation in
discrete data applications and show that their ap-
proach provides improved predictive performance
for their application. The method elicits an in-
formative prior distribution on model space via
“imaginary data” (Good, 1950). The basic idea is to
start with a uniform prior distribution on model
space, update it using imaginary data provided by
the domain expert (the number of imaginary cases
will depend on the application and the available
resources), and then use the updated prior dis-
tribution as the actual prior distribution for the
Bayesian analysis. Ibrahim and Laud (1994) adopt
a somewhat similar approach in the context of
linear models.

6. PREDICTIVE PERFORMANCE

Before presenting two examples, we briefly dis-
cuss methods for assessing the success of various
modeling strategies. A primary purpose of statis-
tical analysis is to make forecasts (Dawid, 1984).
Similarly, Bernardo and Smith (1994, page 238) ar-
gue that when comparing rival modeling strategies,
all other things being equal, we are more impressed
with a modeling strategy that consistently assigns
higher probabilities to the events that actually oc-
cur. Thus, measuring how well a model predicts fu-
ture observations is one way to judge the efficacy of
a BMA strategy.
In the examples below we assess predictive per-

formance as follows. First, we randomly split the
data into two halves, and then we apply each model
selection method to the first half of the data, called
the build data (DB). Performance is then measured
on the second half of the data (test data, or DT).
One measure of predictive ability is the logarith-

mic scoring rule of Good, (1952) which is based on
the conditional predictive ordinate (Geisser, 1980).
Specifically, the predictive log score measures the
predictive ability of an individual model, M, using
the sum of the logarithms of the observed ordinates
of the predictive density for each observation in the
test set,

− ∑
d∈DT

log pr�d �M�DB��(17)

and measures the predictive performance of BMA
with

− ∑
d∈DT

log
{ ∑
M∈�

pr�d �M�DB�pr�M �DB�
}
�(18)
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The smaller the predictive log score for a given
model or model average, the better the predictive
performance. We note that the logarithmic scoring
rule is a proper scoring rule as defined by Mathe-
son and Winkler (1976) and others. Several other
measures of predictive performance are described
in the examples below.
For probabilistic predictions, there exist two

types of discrepancies between observed and pre-
dicted values (Draper et al., 1993): predictive bias
(a systematic tendency to predict on the low side
or the high side), and lack of calibration (a sys-
tematic tendency to over- or understate predictive
accuracy). The predictive log score is a combined
measure of bias and calibration. Considering pre-
dictive bias and calibration separately can also
be useful—see, for example, Madigan and Raftery
(1994) and Madigan et al. (1994), Hoeting (1994)
and Spiegelhalter (1986). In particular, a predictive
model which merely assigns the prior probability to
each future observable may be well calibrated but
of no practical use.

7. EXAMPLES

In this section we provide two examples where
BMA provides additional insight into the problem
of interest and improves predictive performance.
Other applications of BMA can be found in a
number of works (Chatfield, 1995; Draper, 1995;
Fernández, Ley and Steel, 1997; Hoeting, Raftery
and Madigan, 1999; Hoeting, Raftery and Madigan,
1996; Madigan, Andersson, Perlman and Volinsky,
1996b; Madigan and Raftery, 1994; Raftery, Madi-
gan and Hoeting, 1997; Raftery, 1996; Volinsky,
et al. 1997).

7.1 Example 1: Primary Biliary Cirrhosis

7.1.1 Overview. From 1974 to 1984 the Mayo
Clinic conducted a double-blind randomized clini-
cal trial involving 312 patients to compare the drug
DPCA with a placebo in the treatment of primary
biliary cirrhosis (PBC) of the liver (Dickinson, 1973;
Grambsch et al., 1989; Markus et al., 1989; Fleming
and Harrington, 1991). The goals of this study were
twofold: (a) to assess DPCA as a possible treat-
ment through randomization, and (b) to use other
variables to develop a natural history model of the
disease. Such a model is useful for prediction (coun-
seling patients and predicting the course of PBC in
untreated patients) and inference (historical con-
trol information to assess new therapies). Fleming
and Harrington (1991), hereafter FH, developed
such a model. Starting with DPCA plus 14 covari-
ates, they selected a Cox regression model with five

of the covariates. The analysis of FH represents
the current best practice in survival analysis. How-
ever, we argue here that the model uncertainty is
substantial and that procedures such as theirs can
underestimate uncertainty about quantities of in-
terest, leading to decisions that are riskier than
one thinks they are.
Raftery, Madigan and Volinsky (1996) analyzed a

subset of these data by averaging over all possible
models in a much smaller model space. Here, we
apply the leaps-and-bounds approach described in
Section 4.3 to quickly approximate averaging over
a much larger model space. Of the 312 patients, we
omit eight due to incomplete data. Of the remain-
ing 304 patients, 123 were followed until death and
the other 181 observations were censored. There are
14 prognostic variables of interest in the natural
history model, plus the treatment variable DPCA.
Table 1 shows the independent and dependent vari-
ables. Subjects were observed for up to 12.5 years
with a mean observation time of 5.5 years.
Following FH, we used logarithmic transforma-

tions of bilirubin, albumen, prothrombin time and
urine copper. FH used a multistage variable selec-
tion method and concluded that the best model was
the one with the five independent variables: age,
edema, bilirubin, albumin and prothrombin time.

7.1.2 Results. The PBC data set provides an op-
portunity to compare BMA with model selection
methods in the presence of moderate censoring. The
model chosen by a stepwise (backward elimination)
procedure, starting with the variables in Table 1,
included the following variables: age, edema, biliru-
bin, albumin, urine copper and prothrombin time
(which is the FH model with the inclusion of urine
copper). BMA was performed using the leaps-and-
bounds approach described in Section 4.3. Table 2
lists the models with the highest posterior proba-
bilities. The model with the highest approximate
posterior probability was the same as the stepwise
model. Nonetheless, this model represents only
17% of the total posterior probability, indicating
that there is a fair amount of model uncertainty.
The FH model places sixth in the table with a pos-
terior model probability of only 5%. Inference about
independent variables is expressed in terms of the
posterior effect probabilities.
Table 1 contains the posterior means, stan-

dard deviations and posterior effect probabilities,
P(β �= 0 �D�, for the coefficient associated with each
variable. Note that these parameter estimates and
standard deviations directly incorporate model
uncertainty. For instance, the averaged posterior
distribution associated with the independent vari-
able SGOT has 78% of its mass at zero. This shrinks
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Table 1
PBC example: summary statistics and BMA estimates

Mean SD
Variable Range Mean � �D � �D P�� �= 0 �D�
Bilirubin (log) −1.20–3.33 0.60 0.784 0.129 100
Albumen (log) 0.67–1.54 1.25 −2.799 0.796 100
Age (years) 26–78 49.80 0.032 0.010 100
Edema 0 = no edema n = 263 0.736 0.432 84

0.5 = edema but no diuretics n = 29
1 = edema despite diuretics n = 20

Prothrombin time 2.20–2.84 2.37 2.456 1.644 78
Urine copper (log) 1.39–6.38 4.27 0.249 0.195 72
Histologic stage 1–4 3.05 0.096 0.158 34
SGOT 3.27–6.13 4.71 0.103 0.231 22
Platelets 62–563 262.30 −0.000 0.000 5
Sex 0 = male 0.88 −0.014 0.088 4
Hepatomegaly 1 = present 0.51 0.006 0.051 3
Alkaline phosphates 5.67–9.54 7.27 −0.003 0.028 3
Ascites 1 = present 0.08 0.003 0.047 2
Treatment (DPCA) 1 = DPCA 0.49 0.002 0.028 2
Spiders 1 = present 0.29 0.000 0.027 2

Time observed (days) 41–4556 2001
Status 0 = censored 1 = died 0.40

Table 2
PBC example: results for the full data set1

Model no. Age Edema Bili Albu UCopp SGOT Prothromb Hist PMP Log lik

1 • • • • • • 0.17 −174.4
2 • • • • • • • 0.07 −172.6
3 • • • • • • 0.07 −172.5
4 • • • • • 0.06 −172.2
52 • • • • • 0.05 −172.0
6 • • • • • 0.05 −172.0
7 • • • • • • • 0.04 −171.7
8 • • • • • • 0.04 −171.4
9 • • • • • • • 0.04 −171.3
10 • • • • • • • • 0.03 −170.9

PrMA�βi �= 0� 1.00 0.84 1.00 1.00 0.72 0.22 0.78 0.34

1 PMP denotes the posterior model probability. Only the 10 models with the highest PMP values are shown.
2 Model selected by FH.

the estimate toward zero, not unlike other shrink-
age estimates such as ridge regression. In addition,
this tends to increase the standard deviation of the
estimate, to take account of model uncertainty.
Figure 3 shows the posterior effect probabili-

ties, plotted against the corresponding p-value
from the stepwise variable selection model. Over-
all, the posterior effect probabilities imply weaker
evidence for effects than do the p-values, which do
not take model uncertainty into effect. Comparison
of p-values is often used as a measure of evidence
(as in the standard interpretation of p < 0�05 and
p < 0�01 as significant and highly significant), even

though they should not necessarily be interpreted
this way. In fact, p-values arguably overstate the
evidence for an effect even when there is no model
uncertainty (Edwards, Lindman and Savage, 1963;
Berger and Delampady, 1987; Berger and Sellke,
1987).
For the three variables, albumin, age and biliru-

bin (which is highly significant and not shown in
Figure 3), the posterior effect probabilities and the
p-values agree that there is very strong evidence
for an effect [p < 0�001 and P�β �= 0 �D� > 99%].
For the five variables in Table 3, however, the two
approaches lead to qualitatively different conclu-
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Fig. 3. PBC example: posterior effect probabilities from BMA
versus p-values from the stepwise variable selection model.

Table 3
PBC example: a comparison of some p-values from the stepwise
selection model to the posterior effect probabilities from BMA

Var p-value P(� �= 0 �D) (%)
Edema 0.007∗∗ 84
Prothrombin 0.006∗∗ 78
Urine copper 0.009∗∗ 72
Histology 0.09∗ 34
SGOT 0.08 22

sions. Each p-value overstates the evidence for an
effect. For the first three of the variables, the p-
value suggests that the effect is “highly significant”
(p < 0�01), while the posterior effect probability in-
dicates that the evidence is positive but not strong.
For the other two variables (histology and SGOT),
the p-values are “marginally significant” (p < 0�10),
but the posterior effect probabilities actually indi-
cate (weak) evidence against an effect.
For the remaining seven variables (the clump of

points in the lower right corner of Figure 3), p-
values and posterior effect probabilities agree in
saying that there is little or no evidence for an ef-
fect. However, posterior effect probabilities enable
one to make one distinction that p-values cannot.
One may fail to reject the null hypothesis of “no ef-
fect” because either (a) there are not enough data to
detect an effect, or (b) the data provide evidence for

the null hypothesis. P-values cannot distinguish be-
tween these two situations, but posterior effect prob-
abilities can. Thus, for example, for SGOT, P�β �=
0 �D� = 22%, so that the data are indecisive, while
for the treatment effect of DPCA, P�β �= 0 �D� =
2%, indicating evidence for the null hypothesis of
no effect. The posterior probability of “no effect”
can be viewed as an approximation to the poste-
rior probability of the effect being “small,” namely,
P� �β � < ε�, provided that ε is at most about one-
half of a standard error (Berger and Delampady,
1987).

7.1.3 Predictive performance. For assessing pre-
dictive performance, we randomly split the data into
two parts such that an equal number of events (61
deaths) occurred in each part. We compare the re-
sults for BMA with those for stepwise model selec-
tion and for the single model with the highest pos-
terior model probability. Table 4 shows the partial
predictive scores (PPS) for the competing methods.
The PPS is an approximation to the predictive log
score in (17) and (18). A smaller PPS indicates bet-
ter predictive performance. The top model and step-
wise model may be different than those in the anal-
ysis for the full data since they are built using only
half the data.
The difference in PPS of 3.6 can be viewed as an

increase in predictive performance per event by a
factor of exp�3�6/61� = 1�06 or by about 6%. This
means that BMA predicts who is at risk 6% more
effectively than a method which picks the model
with the highest posterior model probability (as
well as 10% better than the Fleming and Harring-
ton model and 2% more effectively than a stepwise
method). We also performed this analysis on 20 dif-
ferent splits of the data, and over the 20 splits BMA
was an average of 2.7 points better (5% per event)
than both the top PMP model and the stepwise
model.
In practice, categorizing patients into discrete

risk categories such as high, medium or low risk

Table 4
PBC example: partial predictive scores for model selection

techniques and BMA1

Method PPS

Top PMP Model 221�6
Stepwise 220�7
FH model 222�8
BMA 217�1

1 FH denotes the model selected by Fleming and Harrington.
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Table 5
PBC example: classification for predictive discrimination

BMA Stepwise

Survived Died % Died Survived Died % Died

Low 34 3 8% 41 3 7%
Risk group Med 47 15 24% 36 15 29%

High 10 43 81% 14 43 75%

Top PMP

Survived Died % Died
42 4 9%
31 11 26%
18 46 72%

may prove more practical than numerical predic-
tion. To assess the performance of a single model
with respect to this goal we proceed as follows:

1. Fit the model to the build data (the subset of
data from which the models are selected) to get
estimated coefficients β̂.

2. Calculate risk scores (xiTβ̂) for each subject in
the build data.

3. Define low, medium and high risk groups for the
model by the empirical (1/3) and (2/3) quantiles
of the risk scores.

4. Calculate risk scores for the test data and assign
each subject to a risk group.

5. Observe the actual survival status of those as-
signed to the three groups.

To assess BMA in this manner, we replace the first
steps above with

1′� Fit each model M1� � � � �MK in � to get esti-
mated coefficients β̂k.

2′� Calculate risk scores (xiTβ̂k) under each model
in � for each person in the build data. A per-
son’s risk score under BMA is the weighted av-
erage of these,

�K
k=1�xiTβ̂k�pr�Mk �DB�.

A method is better if it consistently assigns higher
risks to the people who actually died. Table 5 shows
the classification of the 152 people in the test data,
and whether or not those people died in the study
period. The people assigned to the high risk group
by BMA had a higher death rate than did those as-
signed high risk by other methods; similarly those
assigned to the low and medium risk groups by
BMA had a lower total death rate.
In summary, we found that BMA improves pre-

dictive performance for the PBC study as measured
both by PPS and predictive discrimination. The

BMA results also provide additional evidence that
the p-values for the model selected using stepwise
variable selection overstate confidence at least in
part because they ignore model uncertainty.

7.2 Example 2: Predicting Percent Body Fat

7.2.1 Overview. Percent body fat is now com-
monly used as an indicator of fitness or potential
health problems (Lohman, 1992, page 1). Percent
body fat can be measured in a variety of ways in-
cluding underwater weighing, skinfold calipers and
bioelectric impedance (Katch and McArdle, 1993).
One drawback with these methods is that they re-
quire specialized equipment or expertise on the part
of the person taking the measurements. As a result,
simpler methods for measuring body fat have been
developed. One such approach is to predict percent
body fat using basic body measurements such as
height and weight. This approach is noninvasive
and requires little training or instrumentation. The
drawback of this approach is a potential loss in
accuracy in estimating body fat.
The goal of the analysis described here is to pre-

dict body fat using 13 simple body measurements
in a multiple regression model. We consider body
fat measurements for 252 men. The data were orig-
inally referenced in an abstract by Penrose, Nelson
and Fisher (1985) and are listed in Johnson (1996).
For each subject, percentage of body fat, age, weight,
height and ten body circumference measurements
were recorded (Table 6). We omitted one subject
(observation 42) whose height was apparently er-
roneously listed as 29.5 inches.
The response in the regression model is percent

body fat. Percent body fat was determined using
body density, the ratio of body mass to body volume.
Body volume was measured using an underwater
weighing technique (Katch and McArdle, 1993,
pages 242–244). Body density was then used to es-
timate percent body fat using Brozek’s equation
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Table 6
Body fat example: summary statistics for full data set1

Predictor
number Predictor mean s.d. min max

X1 Age (years) 45 13 21 81
X2 Weight (pounds) 179 29 118 363
X3 Height (inches) 70 3 64 78
X4 Neck circumference (cm) 38 2 31 51
X5 Chest circumference (cm) 101 8 79 136
X6 Abdomen circumference (cm) 93 11 69 148
X7 Hip circumference (cm) 100 7 85 148
X8 Thigh circumference (cm) 59 5 47 87
X9 Knee circumference (cm) 39 2 33 49
X10 Ankle circumference (cm) 23 2 19 34
X11 Extended biceps

circumference 32 3 25 45
X12 Forearm circumference (cm) 29 2 21 35
X13 Wrist circumference (cm) 18 1 16 21

1Abdomen circumference was measured at the umbilicus and
level with the iliac crest. Wrist circumference (cm) was measured
distal to the styloid processes.

(Brozek, Grande, Anderson and Keys, 1963),

% body fat = 457/density− 414�2�(19)

For more details on the derivation of (19) see John-
son (1996) and Brozek et al. (1963). Percent body
fat for the subjects in this study ranged from 0 to
45% with a mean of 18.9% and standard deviation of
7.8%. One subject was quite lean and thus the per-
centage body fat (as computed using Brozek’s equa-
tion) was negative. The body fat for this individual
was truncated to 0%.
Regression results for the full model are given

in Table 7. For this model, standard diagnostic
checking did not reveal any gross violations of the
assumptions underlying normal linear regression
(Weisberg, 1985).
The standard approach to this analysis is to

choose a single best subset of predictors using one
of the many variable selection methods available.
Since a model with fewer predictors than the full
model may be selected, one advantage to this ap-
proach is that the number of measurements that
are required to estimate body fat may be reduced.
An alternative to this approach is to do Bayesian
model averaging. BMA will require that all 13 mea-
surements be taken. However, if BMA produces
better predictions than the single model approach,
then it may be worthwhile to take these additional
measurements.
We will compare Bayesian model averaging to sin-

gle models selected using several standard variable
selection techniques to determine whether there are
advantages to accounting for model uncertainty for
these data. In what follows, we first analyze the full

Table 7
Body fat example: least squares regression results

from the full model1

Predictor Coef Std error t-statistic p-value

Intercept −17.80 20.60 −0.86 0.39
X1 age 0.06 0.03 1.89 0.06
X2 weight −0.09 0.06 −1.50 0.14
X3 height −0.04 0.17 −0.23 0.82
X4 neck −0.43 0.22 −1.96 0.05
X5 chest −0.02 0.10 −0.19 0.85
X6 abdomen 0.89 0.08 10.62 <0.01
X7 hip −0.20 0.14 −1.44 0.15
X8 thigh 0.24 0.14 1.74 0.08
X9 knee −0.02 0.23 −0.09 0.93
X10 ankle 0.17 0.21 0.81 0.42
X11 biceps 0.16 0.16 0.98 0.33
X12 forearm 0.43 0.18 2.32 0.02
X13 wrist −1.47 0.50 −2.97 <0.01

1Residual standard error = 4� R2 = 0�75� N = 251� F-statistic =
53�62 on 13 and 237 df, p-value <0.0001.

data set and then we split the data set into two
parts, using one portion of the data to do BMA and
select models using standard techniques and the
other portion to assess performance. We compare
the predictive performance of BMA to that of indi-
vidual models selected using standard techniques.

7.2.2 Results. There are 13 candidate predictors
of body fat and so potentially 213 = 8192 differ-
ent sets of predictors, or linear regression models.
For the Bayesian approach, all possible combina-
tions of predictors were assumed to be equally likely
a priori. To implement the Bayesian approach, we
computed the posterior model probability for all pos-
sible models using the diffuse (but proper) prior dis-
tributions derived by Raftery, Madigan and Hoet-
ing (1997). For larger problems where it is more
difficult to compute the posterior model probabil-
ity for all possible models, one can use MC3 or the
leaps and bounds algorithm to approximate BMA
(see Section 3.1).
Table 8 shows the posterior effect probabilities,

P�βi �= 0 �D�, obtained by summing the posterior
model probabilities across models for each predictor.
Two predictors, abdomen circumference and weight,
appear in the models that account for a very high
percentage of the total model probability. Five pre-
dictors have posterior effect probabilities smaller
than 10% including age, height, and chest, ankle
and knee circumference. The top three predictors
by P�βi �= 0 �D�, weight, and abdomen and wrist
circumference, appear in the model with the high-
est posterior model probability (Table 9).
The BMA results indicate considerable model un-

certainty, with the model with the highest posterior
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Table 8
Body fat example: comparison of BMA results to model selected

using standard model selection methods1

Bayesian model averaging
Stepwise

Mean SD model
Predictor � �D � �D P�� �= 0 �D� p-value

X6 abdomen 1.2687 0.08 100 <0.01
X2 weight −0.4642 0.15 97 0.03
X13 wrist −0.0924 0.08 62 <0.01
X12 forearm 0.0390 0.06 35 0.01
X4 neck −0.0231 0.06 19 0.05
X11 biceps 0.0179 0.05 17
X8 thigh 0.0176 0.05 15 0.02
X7 hip −0.0196 0.07 13 0.12
X5 chest 0.0004 0.02 6
X1 age 0.0029 0.02 5 0.05
X9 knee 0.0020 0.02 5
X3 height −0.0015 0.01 4
X10 ankle 0.0011 0.01 4

1Stepwise, minimum Mallow’s Cp, and maximum adjusted R2

all selected the same model. The predictors are sorted by P�βi �=
0 �D� which is expressed as a percentage. The results given here
are based on standardized data (columns have means equal to 0
and variances equal to 1).

Table 9
Body fat example: Ten models with highest posterior model

probability (PMP)

X2 X4 X6 X8 X11 X12 X13 PMP

• • • 0.14
• • • • 0.14
• • 0.12
• • • • 0.05
• • • 0.03
• • • 0.03
• • • 0.02
• • • 0.02
• • • • • 0.02
• • • • 0.02

model probability (PMP) accounting for only 14% of
the total posterior probability (Table 9). The top 10
models by PMP account for 57% of the total poste-
rior probability.
We compare the Bayesian results with models

that might be selected using standard techniques.
We chose three popular variable selection tech-
niques, Efroymson’s stepwise method (Miller, 1990),
minimum Mallow’s Cp, and maximum adjusted R2

(Weisberg, 1985). Efroymson’s stepwise method is
like forward selection except that when a new vari-
able is added to the subset, partial correlations are
considered to see if any of the variables currently in
the subset should be dropped. Similar hybrid meth-
ods are found in most standard statistical computer
packages. For the stepwise procedure, we used a
5% significance level which means that the sig-

nificance levels for the F-to-enter and F-to-delete
values were equal to 5%. Shortcomings of stepwise
regression, Mallow’s Cp, and adjusted R2 are well
known (see, e.g., Weisberg, 1985).
All three standard model selection methods se-

lected the same eight-predictor model (Table 8).
There is clear agreement among the frequentist
and BMA methods that the predictors, abdomen
circumference, weight and wrist circumference, are
important predictors of percent body fat. If a cut-off
of α = 0�05 is chosen for interpretation of signif-
icant predictors, the p-values for the predictors
for the single model selected using standard tech-
niques are small for age, and forearm, neck and
thigh circumference as compared to the posterior
effect probabilities for those predictors computed
from the BMA results. Based on these results, one
could argue that, as in Example 1, the p-values
overstate the evidence for an effect.
The posterior distribution for the coefficient of

predictor 13 (wrist circumference), based on the
BMA results, is shown in Figure 4. The BMA
posterior distribution for β13 is a mixture of non-
central Student’s t distributions. The spike in the
plot of the posterior distribution corresponds to
P�β13 = 0 �D� = 0�38. This is an artifact of our ap-
proach as we consider models with a predictor fully
removed from the model. This is in contrast to the
practice of setting the predictor close to 0 with high
probability as in George and McCulloch (1993).

Fig. 4. Body fat example: BMA posterior distribution for β13�
the coefficient for wrist circumference. The spike corresponds to
P�β13 = 0 �D� = 0�38. The vertical axis on the left corresponds
to the posterior distribution for β13 and the vertical axis on the
right corresponds to the posterior distribution for β13 equal to 0.
The density is scaled so that the maximum of the density is equal
to P�β13 �= 0 �D� on the right axis.
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Table 10
Body fat example: performance comparison1

Predictive
Method Model coverage %

BMA Model averaging 90.8
Stepwise and Cp X1X2 X6 X10X12X13 84.4
Adjusted R2 X1X2X4X6X7X8 X10X12X13 83.5

1Predictive coverage % is the percentage of observations in the
performance set that fall in the 90% prediction interval. For
BMA, the top 2500 models, accounting for 99.99% of the posterior
model probability, were used to estimate predictive coverage.

7.2.3 Predictive performance. As in Example 1,
we use the predictive ability of the selected mod-
els for future observations to measure the effective-
ness of a model selection strategy. Our objective is
to compare the quality of the predictions based on
BMA to the quality of predictions based on any sin-
gle model that an analyst might reasonably have
selected.
To measure performance we split the complete

data set into two subsets. We used the split of the
data that was used by the original researchers for
model building (Penrose, Nelson and Fisher, 1985).
The first 142 observations were used to do BMA
and apply the model selection procedures and the
remaining 109 observations were used to evaluate
performance.
Predictive coverage was measured using the pro-

portion of observations in the performance set that
fall in the corresponding 90% prediction interval
(Table 10). The prediction interval is based on the
posterior predictive distribution for individual mod-
els and a mixture of these posterior predictive distri-
butions for BMA. The predictive coverage for BMA
is 90.8% while the predictive coverage for each of
the individual models selected using standard tech-
niques is less than 85%. For different random splits
of this data set, the algorithms often selected differ-
ent models, but BMA typically had superior predic-
tive coverage as compared to the predictive coverage
of the individual models.
Conditioning on a single selected model ignores

model uncertainty which, in turn, can lead to the
underestimation of uncertainty when making infer-
ences about quantities of interest. For these data,
the underestimation of model uncertainty for single
selected models can lead to predictive coverage that
is less than the stated coverage level.

8. DISCUSSION

8.1 Choosing the Class of Models for BMA

In the examples we have discussed, the model
structure was chosen to start with (e.g., linear re-

gression), and then BMA averaged either over a re-
duced set of models supported by the data (e.g., sub-
sets of predictors selected using Occam’s window) or
over the entire class of models (e.g., all possible sub-
sets of predictors). Several authors have suggested
alternative approaches to choosing the class of mod-
els for BMA.
Draper (1995) suggested finding a good model and

then averaging over an expanded class of models
“near” the good model (see also Besag et al., 1995,
Section 5.6). Within a single model structure, this
approach is similar to the Madigan and Raftery
(1994) suggestion that one average over a small
set of models supported by the data. Draper also
discusses the possibility of averaging over models
with different error structures, for example, aver-
aging over models with different link functions in
generalized linear models.

8.2 Other Approaches to Model Averaging

We have focused here on Bayesian solutions to the
model uncertainty problem. Little has been written
about frequentist solutions to the problem. Perhaps
the most obvious frequentist solution is to bootstrap
the entire data analysis, including model selection.
However, Freedman, Navidi and Peters (1988) have
shown that this does not necessarily give a satisfac-
tory solution to the problem.
George (1986a, b, c) proposes a minimax multiple

shrinkage Stein estimator of a multivariate nor-
mal mean under squared error loss. When the prior
distributions are finite normal mixtures, these min-
imax multiple shrinkage estimates are empirical
Bayes and formal Bayes estimates. George shows
that this approach can easily be extended to es-
timate the coefficients in multiple regression in
which case this method essentially provides mini-
max model averaging estimates of the regression
coefficients.
Buckland, Burnham and Augustin (1997) sug-

gested several ad hoc non-Bayesian approaches
to accounting for model uncertainty. They sug-
gested using Akaike’s information criterion (AIC)
(Akaike, 1973) to approximate the model weights.
This approach is similar to the BIC approximating
strategies described above in terms of implementa-
tion, but not in terms of the underlying rationale;
the results also tend to be quite different. Kass and
Raftery (1995) discussed the relative merits of AIC
and BIC in this context. To estimate model uncer-
tainty, Buckland, Burnham and Augustin (1997)
suggested several bootstrapping methods. For a
simulated example, they found coverage to be well
below the nominal level if model uncertainty is
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ignored and to be very accurate when model un-
certainty is taken into account when forming the
intervals.
Computational learning theory (COLT) provides

a large body of theoretical work on predictive
performance of non-Bayesian model mixing (see,
e.g., Kearns, Schapire and Sellie 1994; Chan and
Stolfo, 1996, and the references therein). Related
literature discusses algorithms such as stacking
(Wolpert, 1992), boosting (Freund, 1995) and bag-
ging (Breiman, 1996) (see also Rao and Tibshirani,
1977). Note that while Bayesian model averaging
researchers focus primarily on properties of predic-
tive distributions such as predictive calibration and
coverage of predictive intervals, neural network,
machine learning, and COLT researchers generally
focus on point prediction, often in the context of
supervised learning.

8.3 Perspectives on Modeling

Bernardo and Smith (1994, pages 383–385) drew
the distinction between model selection when one
knows the entire class of models to be entertained
in advance and the situation where the model class
is not fully known in advance, but rather is deter-
mined and defined iteratively as the analysis and
scientific investigation proceed. They referred to the
former situation as the “� -closed perspective,” and
to the latter as the “� -open perspective.” They ar-
gued that, while the � -closed situation does arise
in practice, usually in rather formally constrained
situations, the � -open perspective often provides
a better approximation to the scientific inference
problem.
At first sight, it appears as if the Bayesian model

averaging approach on which we have concentrated
is relevant solely within the � -closed perspective,
because it consists of averaging over a class of mod-
els that is specified in advance, at least in princi-
ple. However, we believe that the basic principles
of Bayesian model averaging also apply, perhaps
with even greater force, to the � -open situation.
This is because in the � -open situation, with its
open and less constrained search for better models,
model uncertainty may be even greater than in the
� -closed case, and so it may be more important for
well-calibrated inference to take account of it.
The Occam’s window approach of Madigan and

Raftery (1994) can be viewed as an implementation
of the � -open perspective, since the model class
(and not just the inferences) used for model aver-
aging is effectively updated as new variables and
data become available. This is because, as new vari-
ables and models are discovered that provide better
predictions, they are included in the Bayesian model

averaging. Similarly, when new and superior mod-
els are discovered, older models that do not predict
as well relative to the new ones are excluded from
the Bayesian model averaging in the Occam’s win-
dow approach, whereas in the original (“� -closed”)
Bayesian model averaging, all models ever consid-
ered continue to be included in the model averaging,
even if they have been effectively discredited.

8.4 Conclusion

We have argued here that it can be important
to take account of model uncertainty, or uncertainty
about statistical structure, when making inferences.
A coherent and conceptually simple way to do this
is Bayesian model averaging, and we have outlined
several practical implementation strategies for this,
as well as pointing to some freely available software.
We have provided implementation details for four
classes of models: linear regression models, general-
ized linear models, survival analysis and graphical
models.
In theory, BMA provides better average predic-

tive performance than any single model that could
be selected, and this theoretical result has now been
supported in practice in a range of applications in-
volving different model classes and types of data.
BMA also provides inference about parameters that
takes account of this sometimes important source
of uncertainty, and in our examples we have found
that BMA-based confidence intervals are better cal-
ibrated than single-model based confidence inter-
vals; the latter tend to be too narrow.
One common criticism of model averaging is that

the results may be too complicated to present eas-
ily. However, if desired, presentation can focus on
the posterior effect probabilities, which are easy to
understand, arguably more so than p-values. An al-
ternative is to focus on a single “best” model when
presenting results, using the BMA analysis as a for-
mally justified form of sensitivity analysis and a ba-
sis for inference about parameters of interest that
takes account of model uncertainty. Model averag-
ing also avoids the problem of having to defend the
choice of model, thus simplifying presentation. In-
deed, model averaging results are robust to model
choice (but not necessarily robust to model class,
as discussed in Section 8.1). Model averaging also
allows users to incorporate several competing mod-
els in the estimation process; thus model averaging
may offer a committee of scientists a better estima-
tion method than the traditional approach of trying
to get the committee to agree on one best model.
Another potential concern is that model averaging

tends to produce higher estimates of variance than
do estimates that ignore model uncertainty. Why
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would practitioners use model averaging when they
are less likely to get significant results? The sim-
ple answer is that model averaging is more correct,
because it takes account of a source of uncertainty
that analyses based on model selection ignore. The
implication is that standard analyses probably tend
to find significant results too often. Also, if results
are significant under model averaging, then conclu-
sions are more robust than those that depend upon
the particular model that has been selected.
There are many open research questions related

to BMA. These include the choice of prior distri-
bution, investigation of the performance of BMA
when the true model is not in the model class, the
performance and tuning of Occam’s window and
similar approaches as against the more computa-
tionally demanding full BMA, the development of
BMA methodology for model classes not considered
here and the development of more efficient com-
putational approaches. As more examples of the
dangers of ignoring model uncertainty are publi-
cized, as computing power continues to expand and
as the size of databases, the numbers of variables
and hence the numbers of possible models increase,
we predict that accounting for model uncertainty
will become an integral part of statistical modeling.
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Comment
M. Clyde

I would like to begin by thanking the authors for
providing an excellent historical perspective and
summarization of literature on BMA. They provided
insightful examples in a wide variety of applica-
tions, demonstrated that BMA provides much better
predictive performance than using a single model
and have developed useful software so that BMA
can be put into practice for a wide class of models.
I would like to comment first on some interesting
connections between some of the algorithms used
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for implementing BMA and then discuss issues re-
lated to the choice of prior distributions for BMA.

1. IMPLEMENTING MODEL AVERAGING

On the surface, model averaging is straightfor-
ward to implement: one needs the marginal distri-
bution of the data, the prior probabilities of models
and the posterior distribution of the quantity of in-
terest conditional on each model. In linear regres-
sion, these components are available in closed form
(at least for nice prior distributions); for general-
ized linear models and many other models, Laplace’s
method of integration can provide accurate approx-
imations to marginal distributions. One problem is
that, in many applications, the model space is too
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large to allow enumeration of all models, and be-
yond 20–25 variables (George and McCulloch, 1997)
estimation of posterior model probabilities and BMA
must be based on a sample of models.
Deterministic search for models using branch and

bounds or leaps and bounds algorithms (Furnival
and Wilson, 1974) is efficient for problems with typ-
ically fewer than 30 variables. For larger problems,
such as in non-parametric models or generalized
additive models, these methods are too expensive
computationally or do not explore a large enough re-
gion of the model space, producing poor fits (Hanson
and Kooperberg, 1999). Markov chain Monte Carlo
(MCMC) methods provide a stochastic method of
obtaining samples from the posterior distributions
f�Mk �Y� and f��Mk

�Mk�Y� and many of the algo-
rithms that the authors mention can be viewed as
special cases of reversible jump MCMC algorithms.

1.1 Reversible Jump MCMC

The reversible jump algorithm (Green, 1995) is
applicable when the models have parameter spaces
of different dimensions and can be described as fol-
lows. If the current state of the chain is ��M�M�,
then:

1. Propose a jump to a new model M∗ of dimension
p∗M∗ with probability j�M∗ �M� given the current
model M.

2. Generate a vector u from a continuous distribu-
tion q�u ��M�M�M∗��

3. Set ��∗M∗�u∗� = gM�M∗��M�u� where g is a bi-
jection between ��M�u� and ��∗M∗�u∗� and the
lengths of u and u∗ satisfy pM + dim(u) = p∗M∗ +
dim(u∗), where pM and pM∗ are the dimensions
of M and M∗, respectively.

4. Accept the proposed move to ��∗M∗�M∗� with
probability

α = min
{
1�
[
f�Y ��∗M∗�M∗�f��∗M∗ �M∗�f�M∗�
× j�M �M∗�q�u∗ ��∗M∗�M∗�M�]
× [f�Y ��M�M�f��M �M�f�M�
× j�M∗ �M�q�u ��M�M�M∗�]−1

×
∣∣∣∣∂gM�M∗��M�u�

∂��M�u�

∣∣∣∣
}
�

In special cases, the posterior distribution of
�M∗ �M∗ is available in closed form with known nor-
malizing constants. If one takes q�u ��M�M�M∗�
to be the posterior distribution of �M∗ �M∗, then the
Jacobian term is identically one (i.e., u = �∗M∗ , and
u∗ = �M), and the acceptance probability simplifies

to

α = min
{
1�

f�Y �M∗�f�M∗�j�M �M∗�
f�Y �M�f�M�j�M∗ �M�

}
so that there is no need to generate u or �M.
In linear models with conjugate prior distribu-

tions, both the integrated SSVS (George and McCul-
loch, 1997) and MC3 (Raftery, Madigan and Hoeting,
1997) algorithms can be viewed as special cases of
the above reversible jump algorithm that differ only
in their choice of proposal distributions on the model
space. In RMHs implementation of MC3, the model
M∗ is determined by picking one of the p variables
at random and either deleting (if it is currently in
the model) or adding it (if it is currently out of the
model); thus j�M∗ �M� = 1/p for models that dif-
fer from M in one coordinate and 0 otherwise. The
reverse jump probability is the same and cancels
from the acceptance probability ratio, so that M∗ is
accepted with probability

α = min
{
1�

f�Y �M∗�f�M∗�
f�Y �M�f�M�

}

= min
{
1�

P�M∗ �Y�
P�M �Y�

}
�

which depends only on the ratio of the marginal
likelihood of the data and the prior probabilities of
models. The integrated version of SSVS is a Gibbs
sampler over the model space. The corresponding
jump proposal is the full conditional distribution of
the indicator variable that the jth variable is in-
cluded in the model, given Y and the remaining
indicator variables for variables currently included
in M. The posterior and proposal distributions can-
cel in the acceptance ratio, so that M∗ is accepted
with probability 1. Other choices of j lead to other
Metropolis–Hastings algorithms.
Dellaportas and Forster (1996) and Godsill (1998)

discuss relationships among other popular algo-
rithms for sampling models and reversible jump
MCMC algorithms in classes of problems such as
graphical models. In problems where the poste-
rior distribution for � is not known in closed form,
u may be generated from a standard proposal
distribution for �M∗ . While the simple “birth” or
“death” proposals for adding or deleting variables
are easy to implement, other choices of j may lead
to algorithms that can move more rapidly through
the model space. Clyde and DeSimone-Sasinowska
(1997) and Clyde (1999a) used approximate pos-
terior probabilities of variable inclusion for the
proposal distribution over the model space to target
the more important variables, rather than propos-
ing all variables be added or deleted with equal
probability 1/p. One of the key issues in designing
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a sampler for BMA is to achieve rapid mixing and
coverage of the model space.
One class of problems where BMA has had out-

standing success is in nonparametric regression
using wavelet bases. In wavelet regression it is
common to treat the error variance, σ2, as fixed,
substituting a robust estimate based on the finest
level wavelet coefficients. Because the columns of
the design matrix are orthogonal, the posterior dis-
tribution of M given σ2 (under conjugate priors)
can be represented as a product of independent dis-
tributions, and SSVS provides i.i.d. draws from the
posterior distribution. However, for many quantities
of interest such as posterior means and variances,
posterior expectations can be computed analytically
despite the high dimension of the parameter space
(p = n), thus avoiding sampling models altogether
(Clyde, Parmigiani and Vidakovic, 1998). Sam-
pling models and σ2 in conjunction with the use
of Rao–Blackwellized estimators does appear to be
more efficient in terms of mean squared error, when
there is substantial uncertainty in the error vari-
ance (i.e., small sample sizes or low signal-to-noise
ratio) or important prior information. Recently,
Holmes and Mallick (1998) adapted perfect sam-
pling (Propp and Wilson, 1996) to the context of
orthogonal regression. While more computationally
intensive per iteration, this may prove to be more
efficient for estimation than SSVS or MC3 in prob-
lems where the method is applicable and sampling
is necessary.
While Gibbs and MCMC sampling has worked

well in high-dimensional orthogonal problems,
Wong, Hansen, Kohn and Smith (1997) found in
high-dimensional problems such as nonparamet-
ric regression using nonorthogonal basis functions
that Gibbs samplers were unsuitable, from both a
computational efficiency standpoint as well as for
numerical reasons, because the sampler tends to
get stuck in local modes. Their proposed sampler
“focuses” on variables that are more “active” at each
iteration and in simulation studies provided better
MSE performance than other classical nonparamet-
ric approaches or Bayesian approaches using Gibbs
or reversible jump (Holmes and Mallick, 1997)
sampling.
With the exception of a deterministic search, most

methods for implementing BMA rely on algorithms
that sample models with replacement and use er-
godic averages to compute expectations, as in (7).
In problems, such as linear models, where posterior
model probabilities are known up to the normalizing
constant, it may be more efficient to devise estima-
tors using renormalized posterior model probabili-
ties (Clyde, DeSimone and Parmigiani, 1996; Clyde,

1999a) and to devise algorithms based on sampling
models without replacement. Based on current work
with M. Littman, this appears to be a promising di-
rection for implementation of BMA.
While many recent developments have greatly ad-

vanced the class of problems that can be handled us-
ing BMA, implementing BMA in high-dimensional
problems with correlated variables, such as non-
parametric regression, is still a challenge from both
a computational standpoint and the choice of prior
distributions.

2. PRIOR SPECIFICATION

In applications, I have found that specifying the
prior distributions on both the parameters and
model space to be perhaps the most difficult aspect
of BMA. While the authors discussed prior distri-
butions on the model space, the hyperparameters
in the prior distributions for the parameters within
each model also require careful consideration, as
they appear in the marginal likelihoods and hence
the posterior model probabilities. In many prob-
lems, subjective elicitation of prior hyperparameters
is extremely difficult. Even if subjective elicitation
is possible, it may be desirable to also use default
prior distributions as part of a broader sensitiv-
ity analysis. Proper, but diffuse, prior distributions
for � may have unintended influences on posterior
model probabilities and deserve careful attention.
While default prior distributions (both proper and
improper) can be calibrated based on information
criteria such as AIC, BIC or RIC (Clyde, 1999b;
George and Foster, 1997; Fernandez et al. 1998), no
one prior distribution emerges as the clear choice
for BMA (although, in general, I have found that
BMA based on BIC and RIC priors out-performs
BMA using AIC calibrated prior distributions).
Based on simulation studies, Fernandez, Ley and
Steel (1998) recommend RIC-like prior distributions
when n < p2 and BIC-like prior distributions oth-
erwise. In wavelets, where p = n, there are cases
where priors calibrated based on BIC have bet-
ter predictive performance than prior distributions
calibrated using RIC, and vice versa. In problems
such as wavelets where subjective information is
not available, empirical Bayes (EB) methods for
estimating the hyperparameters ensure that the
prior distribution is not at odds with the data and
have (empirically) led to improved predictive per-
formance over a number of fixed hyperparameter
specifications as well as default choices such as
AIC, BIC, and RIC (Clyde and George, 1998, 1999;
George and Foster, 1997; Hanson and Yu, 1999) for
both model selection and BMA.
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In research on the health effects of airborne par-
ticulate matter (PM), I have found that results us-
ing BMA may be very sensitive to the choice of prior
hyperparameters (Clyde, 1999b). While model av-
eraged estimates of relative risks conditioning on
models that included particulate matter did not dif-
fer greatly using AIC, RIC or BIC calibrated prior
distributions, the probability of no health effect at-
tributed to PM was highly sensitive to the choice of
prior distribution. As subjective prior distributions
may be viewed with scepticism by some consumers
of PM research, EB methods for generalized linear
models may be a useful alternative.
While posterior probabilities, P�β �= 0 �Y�, of no

effect may be more natural than p-values, care must
be taken in their interpretation. Besides being sen-
sitive to prior hyperparameters (an indication that
the evidence in the data may be weak), one needs to
consider what other models are also under consid-
eration. While Occam’s window may be an effective
means for accounting for model uncertainty by fo-
cusing on a few models, I am concerned that it leads
to biased posterior effect probabilities, as marginal
posterior probabilities for important variables are
often inflated, while small posterior effect probabil-
ities are underestimated, because of averaging over
a restricted class of models. Perhaps an alternative
is to use the models in Occam’s window to commu-
nicate uncertainty, using displays such as in Clyde
(1999b), which focus on the “best” models for il-
lustrating model uncertainty, but provide estimates
based on averaging over all (sampled) models.
Posterior effect probabilities depend on the

variables (and their correlation structure) under
consideration in the model space. In health effect–
pollution studies, one may also want to consider
other copollutants, such as ozone, NO2, CO and
SO2, in addition to PM. As pollution levels may be
highly correlated (perhaps due to latent variables),

they may effectively divide up the posterior mass
based on “equivalent models.” The posterior effect
probabilities for each individual pollutant, based
on marginal probabilities, may be very small [the
“dilution” (George, 1999) depends on the number of
copollutants], even though the overall probability of
a pollution effect (at least one pollutant variable is
included in the model) could be near 1. Of increas-
ing interest in PM research is whether the chemical
composition of PM can explain health effects. As
measurements of chemical constituents of PM be-
come available, the number of potential variables
will increase dramatically, leading to the potential
dilution of effect probabilities.
The application of model averaging in the� -open

perspective leads to additional questions. For exam-
ple, how should we specify prior distributions in a
consistent manner as we add a number of possibly
highly correlated variables? Are estimates of poste-
rior effect probabilities or other quantities stable as
we add more, possibly irrelevant, variables to the
model? Using Occam’s window to discredit models
from future consideration may lead to a situation
where none of the models in Occam’s window con-
tain a particular variable. Do we now disregard this
variable from further analyses, even though it may,
in conjunction with the new variables, lead to a bet-
ter model than those found so far? If we decide to
include this variable only in models that contain
the new variables, is our assignment of prior dis-
tributions coherent? While updating posterior dis-
tributions sequentially, as new data are collected,
is coherent, is applying Occam’s window sequen-
tially a coherent strategy and what are the implied
prior distributions? While model averaging is a nat-
ural way to incorporate model uncertainty in the
� -open perspective, the choice of prior distribu-
tions over both parameter and model spaces be-
comes even more difficult.
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Comment
David Draper

1. MODEL UNCERTAINTY, YES, DISCRETE
MODEL AVERAGING, MAYBE

This paper offers a good review of one ap-
proach to dealing with statistical model uncer-
tainty, an important topic and one which has
only begun to come into focus for us as a pro-
fession in this decade (largely because of the
availability of Markov chain Monte Carlo comput-
ing methods). The authors—who together might be
said to have founded the Seattle school of model
uncertainty—are to be commended for taking this
issue forward so vigorously over the past five years.
I have eight comments on the paper, some gen-
eral and some specific to the body-fat example
(Jennifer Hoeting kindly sent me the data, which
are well worth looking at; the data set, and a
full description of it, may be obtained by email-
ing the message send jse/v4n1/datasets.johnson to
archive@jse.stat.ncsu.edu).

1. In the Bayesian approach that makes the most
sense to me personally, the de Finetti (1974,
/1975) predictive point of view, a model is a
joint probability distribution p�y1� � � � � yn �� �
for observables yi, in which probability is an
expression of your personal uncertainty and
� is the set of assumptions (implicit and ex-
plicit) on which your uncertainty assessment is
based. From this vantage point, how can we talk
about posterior model probabilities, as the au-
thors (hereafter HMRV) do in their equation (2)?
Wouldn’t we be talking about probabilities of
probabilities?
Both crucially and reasonably, de Finetti

emphasized starting with exchangeability judg-
ments in constructing p�y1� � � � � yn �� �, and
the point seems to be that (a) what HMRV
call a model arises from these judgments and
(b) HMRV’s “model uncertainty” in de Finetti’s
language is uncertainty about the level of aggre-
gation or conditioning at which (your uncertainty
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about) the data may reasonably be regarded
as exchangeable. In the simplest possible set-
ting, for instance, of binary observables, ini-
tially with no covariates, de Finetti’s (1931)
celebrated representation theorem says that
� 1 = �yi exchangeable� is functionally equiv-
alent to the simple hierarchical model �θ ∼
p�θ�� �yi � θ� ∼iid Bernoulli�θ��, where θ =
P�yi = 1�. Now suppose I also observe a bi-
nary covariate x, and I am uncertain about
whether to assume � 1 or �2 = �yi condition-
ally exchangeable given xi�, by which I mean
that �yi �xi = 1� and �yi �xi = 0� are separately
exchangeable but y = �y1� � � � � yn� is not. Then
in predicting yn+1, say, I could either calcu-
late p�yn+1 �y� �1�, or p�yn+1 �y� �x1� � � � � xn+1��
�2�, or I could expand the model hierarchically
by adding uncertainty about �j at the top of
the hierarchy, which would be implemented via
equations like HMRV’s (1–3). Thus “model” un-
certainty, or “structural” uncertainty (Draper
1995; this paper, Section 8.4), or uncertainty
about exchangeability, is something that I think
de Finetti would agree can be discussed proba-
bilistically (as long as we don’t take the “models”
to be anything other than sets of judgments
that help in predicting observables). (It is prob-
ably also worth mentioning regarding HMRV’s
equations (1–3) that � needs to have the same
meaning in all “models” for the equations to be
straightforwardly interpretable; the coefficient of
x1 in a regression of y on x1 is a different beast
than the coefficient of x1 in a regression of y on
x1 and x2.)

2. At the beginning of Section 5 HMRV say that
“When there is little prior information about
the relative plausibility of the models consid-
ered, the assumption that all models are equally
likely a priori is a reasonable ‘neutral’ choice.”
This sounds unassailable, but reality is actu-
ally a bit more slippery, as was first pointed out
to me by John Tukey. Suppose there are two
models (a) which get counted separately in the
list of possible models but (b) which are func-
tionally (almost) equivalent as far as making
predictions is concerned; then “assuming that
they are equally likely in the prior” amounts to
giving the single model, of which there are es-
sentially two slightly different versions, twice as
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much actual prior weight. An example of this
in regression problems arises when there is a
high degree of collinearity among the predictors,
as occurs in the body fat data: for instance, the
correlations between the (abdomen, hip) and (ab-
domen, chest) pairs of variables are +0�94 and
+0�91, respectively. Consider the simple version
of HMRV’s set-up with an outcome y, predic-
tors x1 and x2 and a third predictor x3 which is
perfectly correlated with x2. A researcher who
wishes to use the HMRV “flat-prior” idea and
who deals with the collinearity by ignoring x3
altogether would place prior weight 1/4 on each
of the models in � 1 = �no predictors; x1�x2;
�x1� x2��, but another investigator who tries to
include x3 in the model in a naive manner (a)
will initially put prior weight 1/8 on each of
the models in � 2 = �no predictors; x1� x2� x3�
�x1� x2�� �x1� x3�; �x2� x3�; �x1� x2� x3��; (b) will
be forced to drop the last two models in � 2 as
unfittable; (c) will be left with weight 1/6 on
each of the models in � 3 = �no predictors; x1;
x2; x3; �x1� x2�; �x1� x3�� and (d) will thus effec-
tively put respective weights �1/6� 1/6, 1/3� 1/3�
on the models in � 1. This sort of thing would
presumably have little effect on HMRV’s calcula-
tions in the body-fat example, but would be more
important in settings (for instance, in economics
and sociology; see, e.g., Western, 1996) where
the number p of predictors is large relative to
the sample size n and there is a high degree of
collinearity among many of the xj. What role
should collinearity play in the HMRV approach?

3. In the body fat example it is interesting to
think about why the R2 value is only 75% for
the (Gaussian maximum likelihood) model in
HMRV’s Table 7 (which includes all the predic-
tors entered linearly), because the variables in
the authors’ Table 6 provide a fairly exhaustive
catalogue of body measurements that might be
relevant to fat level. One possibility is nonlin-
ear terms in the available predictors, and indeed
HMRV neglect to mention that there is a no-
ticeable interaction between the abdomen and
weight variables. While I am on that subject,
is anything new required in the authors’ ap-
proach to deal with interactions, or to HMRV
are they just additional predictors? What about
the data-analytic idea (e.g., Mosteller and Tukey,
1977) that it is always good form to make sure
the main effects for x1 and x2 (say) are in any
model which includes the interaction x1x2?. I
do not mean to downplay the importance of
model uncertainty, but it is arguable from a
purely scientific point of view that a better use

of our time is figuring out what other variables
should be included in the body fat model, such
as (self-reported) exercise level, that might be
unreliable but would be better than nothing, to
get the residual SD down considerably below 4
percentage points. After all, even an R2 of 75%
means that we have only been able to drive the
approximate posterior predictive standard de-
viation (SD) for a given individual down from
its value in a model with no predictors, namely
7.7% (the overall SD of the body fat variable,
on a scale from 0% to 45%), to 4.0% with all
13 predictors; in other words, even taking ac-
count of all available x’s the actual body fat of
a man whose predicted value is 19% (the mean)
could easily be anywhere between 11% (a lean
athlete) and 27% (the 85th percentile of the ob-
served distribution). As statisticians we tend to
feel that we have done a good job in a regression
problem when all of the technical assumptions
of the model look plausible given the behavior of
the residuals, even if the unexplained variation
in y is large; but as scientists we should not be
happy until this variation is small enough for
the model to be of substantial practical use in,
for example, decision making.

4. Question: What is the Bayesian justification
for out-of-sample predictive validation, as with
the splitting of the data into build and test
subsets in HMRV’s Section 6? After all, isn’t
keeping score on the quality of your predictions
of the test data an inherently frequentist ac-
tivity? Here are two answers to this question:
(1) Who says there is anything wrong with a
Bayesian-frequentist fusion? The two paradigms
have both been around for 350 years, since the
earliest attempts to attach meaning to proba-
bilistic concepts (e.g., Hacking 1975), and if the
two schools were like prize fighters punching it
out for centuries it is clear that both boxers are
still standing, which I take to be empirical proof
of a theorem saying there must be elements of
merit in both viewpoints. A fusion of the form
�reason in a Bayesian way when formulating
your inferences and predictions, and think fre-
quentistly when evaluating their quality� seems
to me to bring the advantages of Bayesian un-
certainty assessment and predictive calibration
together, and is the approach I try to use in both
my research and consulting. See Good (1983) for
more thoughts on the topic of Bayes/non-Bayes
synthesis. (2) BMA is really about model selec-
tion, because even averaging over a lot of models
is a form of model choice. Model selection should
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best be viewed as a decision problem (Key, Per-
occhi and Smith, 1999; Draper 1999a): to choose
a model you have to say to what purpose the
model will be put, for how else will you know
whether your model is good enough? If you base
the utility function in your decision formula-
tion on the quality of predictions for future data
not yet collected, then the expectation in the
usual maximization-of-expected-utility prescrip-
tion is over that future data; having not yet seen
that data, the only way to evaluate such an ex-
pectation is to assume that the present data is
exchangeable with the future and use some of it
to proxy for data that hasn’t arrived yet—hence
the build and test framework. This idea can
be formalized (Gelfand, Dey and Chang, 1992;
Draper and Fouskakis, 1999).

5. What characteristics of a statistical example pre-
dict when BMA will lead to large gains? The only
obvious answer I know is the ratio n/p of ob-
servations to predictors (with tens of thousands
of observations and only dozens of predictors to
evaluate, intuitively the price paid for shopping
around in the data for a model should be small).
Are the authors aware of any other simple an-
swers to this question?
As an instance of the n/p effect, in regression-

style problems like the cirrhosis example where
p is in the low dozens and n is in the hundreds,
the effect of model averaging on the predictive
scale can be modest. HMRV are stretching a bit
when they say, in this example, that “the people
assigned to the high risk group by BMA had a
higher death rate than did those assigned high
risk by other methods; similarly those assigned
to the low and medium risk groups by BMA had
a lower total death rate”; this can be seen by
attaching uncertainty bands to the estimates in
Table 5. Over the single random split into build
and test data reported in that table, and assum-
ing (at least approximate) independence of the
152 yes/no classifications aggregated in the ta-
ble, death rates in the high risk group, with bi-
nomial standard errors, are 81% ± 5%, 75% ±
6% and 72% ± 6% for the BMA, stepwise, and
top PMP methods, and combining the low and
medium risk groups yields 18% ± 4%, 19% ± 4%
and 17% ± 4% for the three methods, respec-
tively, hardly a rousing victory for BMA. It is
probable that by averaging over many random
build–test splits a “statistically significant” dif-
ference would emerge, but the predictive advan-
tage of BMA in this example is not large in prac-
tical terms.

6. Following on from item (4) above, now that the
topic of model choice is on the table, why are
we doing variable selection in regression at all?
People who think that you have to choose a sub-
set of the predictors typically appeal to vague
concepts like “parsimony,” while neglecting to
mention that the “full model” containing all the
predictors may well have better out-of-sample
predictive performance than many models based
on subsets of the xj. With the body-fat data,
for instance, on the same build–test split used
by HMRV, the model that uses all 13 predic-
tors in the authors’ Table 7 (fitted by least
squares–Gaussian maximum likelihood) has
actual coverage of nominal 90% predictive in-
tervals of �95�0 ± 1�8�% and �86�4 ± 3�3�% in
the build and test data subsets, respectively;
this out-of-sample figure is better than any of
the standard variable-selection methods tried
by HMRV (though not better than BMA in this
example). To make a connection with item (5)
above, I generated a data set 10 times as big but
with the same mean and covariance structure as
the body-fat data; with 2,510 total observations
the actual coverage of nominal 90% intervals
within the 1,420 data values used to fit the
model was �90�6 ± 0�8�%, and on the other 1,090
observations it was �89�2 ± 0�9�%. Thus with
only 251 data points and 13 predictors, the “full
model” overfits the cases used for estimation
and underfits the out-of-sample cases, but this
effect disappears with large n for fixed p (the
rate at which this occurs could be studied sys-
tematically as a function of n and p). (I put “full
model” in quotes because the concept of a full
model is unclear when things like quadratics
and interactions in the available predictors are
considered.)
There is another sense in which the “full

model” is hard to beat: one can create a rather
accurate approximation to the output of the
complex, and computationally intensive, HMRV
regression machinery in the following closed-
form Luddite manner. (1) Convert y and all of
the xj to standard units, by subtracting off their
means and dividing by their SDs, obtaining y∗

and x∗j (say). This goes some distance toward
putting the predictors on a common scale. (2)
Use least squares–Gaussian maximum likeli-
hood to regress y∗ on all [or almost all �∗�] the
x∗j, resolving collinearity problems by �∗� sim-
ply dropping out of the model altogether any x’s
that are highly correlated with other x’s (when
in doubt, drop the x in a pair of such predic-
tors that is more weakly correlated with y. This
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Table 1
A comparison of the HMRV and PSC approaches to judging when the effect of a predictor on the outcome is large, in the body fat

example with caliper c = 1/6.

Method X6 X2 X13 X12 X4 X11 X8 X7 X5 X1 X9 X3 X10

HMRV
P�βj �= 0 �D� 100 97 62 35 19 17 15 13 6 5 5 4 4

PSC
P��βj� ≥ c �D� 100 96 59 16 23 6 30 0∗ 11 8 2 0 0

Note: Table entries are percentages.
*This variable was dropped in the PSC approach due to collinearity.

doesn’t handle collinearity problems in which
three or more of the xj are close to linearly de-
termined, but I am trying for simplicity here).
(3) People who claim that a (standardized) re-
gression coefficient βj is zero can’t really mean
that; no continuous quantity is ever precisely
zero. What they presumably mean is that βj is
close enough to zero that the effect of xj on y
is close to negligible from a practical significance
point of view. Therefore, introduce the idea of a
practical significance caliper (PSC) c and assert
that βj is practically nonzero if P��βj� ≥ c �data�
is large. Table 1 reports a comparison of this ap-
proach with that of HMRV on the body-fat data;
c = 1/6 is a caliper value that produces reason-
ably good agreement between the two methods
(in other problems in which I have tried both
approaches, values of c−1 in the vicinity of 4–6
have produced virtually identical agreement; see
the last sentence in the authors’ Section 7.1.2
for a reason why). This means that the HMRV
approach with this data set is essentially equiv-
alent to a rather conservative rule of the form �a
predictor x has a “significant” effect if changing
it by six or more SDs is associated with a 1-SD
or larger change in y�.

7. The authors’ Figure 4 really bothers me: think-
ing scientifically, both wrist circumference and
body fat are being modeled as continuous quan-
tities in HMRV’s approach, and my uncertainty
about “the effect of wrist circumference on body
fat” (now there’s a phrase that deserves to be put
into quotes, if any phrase ever did) is surely con-
tinuous as well. So where does the spike at zero
come from? The authors acknowledge that this
is an “artifact” of their approach, and I will now
argue that it is an unnecessary artifact.
HMRV’s method averages together a lot of

models, in each of which the β for a given vari-
able is either effectively left at its value from
least squares–Gaussian maximum likelihood fit-
ting (since they use flat priors on the param-
eters conditional on a given model’s structure)

or dragged all the way to zero. But by now we
have almost 30 years of good empirical Bayes re-
search (e.g., Sclove, Morris, Radhakrishna, 1972;
Copas, 1983) to show that modeling approaches
that shrink a given coefficient part of the way
back to zero can dominate all-or-nothing meth-
ods. One way forward is via hierarchical model-
ing of the form

�γ� τ2� σ2� ∼ p�γ� τ2� σ2� (e.g., diffuse),
�β �Z�γ� τ2� ∼Np+1�Zγ� τ2Ip+1��(1)

�y �X�β�σ2� ∼Nn�Xβ�σ2In��
where y is the n-vector of outcomes (in standard
units), X is the n × �p + 1� design matrix from
the “full model” with all of the predictors stan-
dardized; β is the �p + 1�-vector of regression
coefficients and Z is a vector or matrix quan-
tifying prior information about the signs and
relative magnitude of the “effects of the xj on y”
(see Greenland, 1993 for empirical Bayes fitting
of a model like (1) with dichotomous outcomes in
epidemiological examples). Elsewhere (Browne,
1995; Draper, 1999b) Bill Browne and I show
that this model can lead to out-of-sample predic-
tive performance at least as good as that of BMA,
and it has the advantage of scientific credibility
in that the posterior distribution for any given
βj depends naturally on substantive prior in-
formation and is continuous. Figure 1 compares
the posterior distribution for β13, the coefficient
in HMRV’s Figure 4, under three sets of model-
ing assumptions: the “full model” (with a diffuse
prior on the β vector), BMA, and model (1) above
using a Z vector, �+1� −4� 0, −2� 0, +10� −2� +2�
0, 0, +2� +1� −1�, in the order of variables in the
authors’ Table 6 obtained from discussions with
physicians in the Bath area. Given the physi-
cians’ judgments, hierarchical modeling shrinks
β13 toward zero, as does the HMRV approach, but
model (1) does so smoothly and in a way that is
controlled by substantive prior information. This
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Fig. 1. Three posterior distributions for β13� the coefficient for
wrist circumference in the body fat example of Section 7�2.

is the motivation for the title of my comments:
I am with the authors 100% on the importance
of model uncertainty, but I believe that discrete
model averaging should be reserved for problems
(such as the oil price example in Draper, 1995)
where structural uncertainty is truly discrete.

8. Finally, and continuing with the theme that
model selection should be done decision-theoret-
ically, in HMRV’s Section 7.2 the goal is to pre-
dict body fat using 13 physiological variables or
a subset thereof. Consider a typical use of the
resulting equation in a doctor’s office or a mo-
bile clinic set up in a shopping mall. Predictor xj
takes tj seconds of time to measure per person,
where the tj for the variables in the authors’ Ta-
ble 6 might vary from a low of 3 to 4 seconds
(to elicit and record the subject’s age) to a high
of 25 to 30 seconds (to accurately measure and
record the subject’s weight). These amounts of

time translate directly either into money (how
much does it cost to keep the mobile clinic run-
ning?) or to numbers of subjects who can be seen
in a given unit of time such as a day—in other
words, they are costs. The potential benefit of in-
cluding a predictor is the increase in predictive
accuracy resulting from that predictor being in
the equation versus not being there. These ben-
efits can also be expressed in monetary terms,
for instance by quantifying the value to the sub-
ject of being correctly classified as either having
or not having a body fat value sufficiently high
to warrant clinical intervention. Analyses based
either on traditional variable-selection methods
or on HMRV’s formulation of BMA are based on
benefit-only calculations that examine predictive
accuracy, but it seems to me (and to a Ph.D. stu-
dent, Dimitris Fouskakis, who is working with
me) that cost–benefit calculations which weigh
predictive accuracy against data collection cost
are more relevant to the real-world problem of
model choice in the class of generalized linear
models. In work that we are writing up now
(Draper and Fouskakis, 1999) we make this cost–
benefit tradeoff explicit in the context of a prob-
lem in health policy analysis, and we show that
sharply different subsets of predictors are chosen
when costs are considered along with predictive
quality. The BMA analysis in Table 8 is inter-
esting, but how does it relate to the manner in
which the body-fat model will actually be used in
the world?

I hope it is clear from these remarks that I dif-
fer from the authors principally in matters of im-
plementation and interpretation; there can be no
disagreement about the importance of model uncer-
tainty itself.

Comment
E. I. George

I would like to begin by congratulating the au-
thors of this paper, who have done a masterful job
of pulling together and synthesizing a large and
growing body of work on a very promising approach

E. I. George is Professor, MSIS Department, CBA
5.202, University of Texas, Austin, Texas 78712–1175
(e-mail: ed.george@bus.utexas.edu).

to modeling and prediction. They have explained
the essential features of Bayesian model averaging
(BMA) with unusual clarity, stressing its many ad-
vantages and paying attention to the crucial issues
of implementation and interpretation. It is by un-
derstanding what BMA offers, as well as its limi-
tations, that statisticians will be able to exploit its
real potential.
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1. THE PREDICTIVE SUCCESS OF BMA

My own experience with BMA has been similar
to that of the authors. In problems where model
uncertainty is present, I have found BMA to consis-
tently yield predictive performance improvements
over single selected models. I have also found this
phenomenon to persist under a wide variety of prior
choices. Many colleagues have also reported similar
experiences.
Although puzzling at first glance, a simplis-

tic explanation for the predictive success of BMA
stems from the observation that BMA predictions
are weighted averages of single model predictions.
If the individual predictions are roughly unbi-
ased estimates of the same quantity, then av-
eraging will tend to reduce unwanted variation.
(Perhaps a more sellable name for BMA would
be Bayesian prediction averaging.) Going a bit
further, it can be argued that under model un-
certainty, selecting a single prediction is tanta-
mount to using a randomized rule (where the ran-
domization takes place over the model space). If
prediction is evaluated by a convex loss function,
as it usually is, then by Jensen’s inequality, an ap-
propriately weighted average prediction will tend to
improve on the randomized rule. Geometrically, av-
eraging pulls the prediction inside the convex hull of
the individual predictions, a sensible strategy under
a convex loss function unless there is systemic bias
in all the predictions. However, there is more to it
than that, because BMA weights each single model
prediction by the corresponding posterior model
probability. Thus, BMA uses the data to adaptively
increase the weights on those predictions whose
models are more supported by the data.
The key idea which motivates BMA comes from

posing the model uncertainty problem within the
Bayesian formalism. By using individual model
prior probabilities to describe model uncertainty, the
class of models under consideration is replaced by
a single large mixture model. Under this mixture
model, a single model is drawn from the prior, the
prior parameters are then drawn from the corre-
sponding parameter priors and finally the data is
drawn from the identified model. For the problem
of prediction under logarithmic scoring and many
other loss functions including squared error loss,
BMA* arises naturally as the Bayes rule which min-
imizes posterior expected loss. (I have used BMA*
here to denote BMA which averages over all the
models, as opposed to the approximations discussed
below.) The authors implicitly refer to this fact when
they point out that BMA* provides better average
predictive performance than any of the single mod-

els under consideration, because they use “average”
to mean posterior expectation under the mixture
model. Indeed, under the mixture posterior, BMA*
is superior to any other procedure.
It is tempting to criticize BMA* because it does

not offer better average predictive performance than
a correctly specified single model. However, this fact
is irrelevant when model uncertainty is present be-
cause specification of the correct model with cer-
tainty is then an unavailable procedure. In most
practical applications, the probability of selecting
the correct model is less than 1, and a mixture
model elaboration seems appropriate. The real diffi-
culty is that the mixture probabilities are unknown
(except for Bayesian purists), and this is where the
prior specification problem comes into play. Fortu-
nately, for the prediction problem, BMA appears to
be robust and offer improvements over a wide va-
riety of model space priors. This is in part because
the posterior model probabilities tend to be strongly
adaptive. As long as the model space prior is not ex-
tremely asymmetric, averaging will tend to improve
predictions for the reasons I alluded to above.
It should also be mentioned that BMA is well

suited to yield predictive improvements over sin-
gle selected models when the entire model class is
misspecified. In a sense, the mixture model elabora-
tion is an expansion of the model space to include
adaptive convex combinations of models. By incor-
porating a richer class of models, BMA can better
approximate models outside the model class.

2. CONSIDERATIONS FOR
PRIOR SPECIFICATION

BMA implementation requires prior specification
on the individual parameter spaces and on the over-
all model space. The parameter space priors deter-
mine the integrated likelihood in (3) which controls
both the individual predictive distributions and the
adaptivity of the posterior weights in (1). It is espe-
cially important in this context to use robust param-
eter priors which are relatively flat over the range
of plausible parameter values. I suspect the MLE
and Laplace approximations discussed in Section 4
implicitly correspond to using such robust priors,
and I wonder if the authors agree. Failure to use ro-
bust parameter priors can lead to unstable, sharply
adaptive posterior weights which denigrate, rather
than improve, predictive performance. At the other
extreme, to obtain frequentist guarantees of robust-
ness, it may be necessary to use improper priors
or even pseudo marginal distributions as was done
to obtain the minimax multiple shrinkage estima-
tors in George (1986a, b, c, 1987). However, by going
outside the proper prior realm, norming constants
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become arbitrary, a drawback that complicates the
specification and interpretation of the prior model
probabilities.
The specification of the prior model probabilities

can also be a delicate matter. The simplest, and
seemingly appropriate choice when no prior infor-
mation is available, is the uniform prior pr�Mi� ≡
1/2p. Although the authors did not state their model
space priors in the Section 7 examples, (unless I
missed it), I suspect this is the prior they used. We
also initially favored this prior in George and Mc-
Culloch (1993), but then realized that the more gen-
eral independence prior (16) offered the flexibility of
putting more weight on parsimonious models and
of differential weighting across the variables, as de-
scribed by the authors. Unfortunately, it is usually
difficult to have the kind of prior information to dif-
ferentiate among the possible choices. To mitigate
some of these specification difficulties, I have re-
cently found it useful to use empirical Bayes meth-
ods to estimate prior hyperparameters for both the
parameter and model priors. In George and Fos-
ter (1997) and Clyde and George (1999a, b), we
found that such empirical Bayes methods consis-
tently yielded predictive improvements over fixed
hyperparameter choices.
Another more subtle problem for model space

prior specification, discussed in George (1999), is a
posterior phenomenon which I call dilution. Con-
sider, for example, a regression problem where
many of the covariates were so highly correlated
that large subsets of models were essentially equiv-
alent. If a uniform prior were put on the model
space, then excessive prior probability would be al-
located to these subsets, at the expense of some
of the unique models. The predictive potential of
BMA would be compromised if the only good models
were unique and different from the rest. One way
of avoiding this problem would be to use prior spec-
ifications which dilute the probability within sub-
sets of similar models. Such priors could maintain
the probability assigned to model neighborhoods
when redundant models were added to the model
space. An example of priors which have this dilution
property are the tree priors proposed in Chipman,
George and McCulloch (1998). I am currently de-
veloping dilution priors for multiple regression and
will report on these elsewhere.

3. AVERAGING OVER SUBSETS

As the authors make clear, BMA*, which averages
over all models, may not be practical in even mod-
erately sized problems. It is then necessary to con-
sider approximations which average over a selected

subset of these models. Because the fundamental
BMA* quantities of interest are posterior expecta-
tions, the approximation problem is just the classic
problem of using sample averages to estimate pop-
ulation means. In this regard, I like using MCMC
methods such asMC3 which, in the spirit of random
sampling, attempt to select a representative subset
of models. Ergodic properties of the MCMC sampler
carry over directly to the sample averages.
An aspect that I would add to the authors’ discus-

sion of MCMC methods is that one can do much
better than simple averages such as (7) in this
context. In many problems pr�D �Mk� can be ei-
ther computed exactly or approximated very well.
When S is the selected subset, one can then com-
pute pr�Mk �D�S� similarly to (2) and use condi-
tional expectations such as (6) to estimate posterior
quantities. For example, one could use

E�� �D�S� = ∑
Mk∈S

�̂k pr�Mk �D�S�

to estimate E�� �D� in Section 1. Under iid sam-
pling, such estimates are nearly best unbiased
(George, 1999) and appear to very substantially im-
prove on simple averages (George and McCulloch,
1997).
For the purpose of approximating BMA*, I am less

sanguine about Occam’s window, which is funda-
mentally a heuristic search algorithm. By restrict-
ing attention to the “best” models, the subset of mod-
els selected by Occam’s Window are unlikely to be
representative, and may severely bias the approx-
imation away from BMA*. For example, suppose
substantial posterior probability was diluted over
a large subset of similar models, as discussed ear-
lier. Although MCMC methods would tend to sam-
ple such subsets, they would be entirely missed by
Occam’s Window. A possible correction for this prob-
lem might be to base selection on a uniform prior,
i.e. Bayes factors, but then use a dilution prior for
the averaging. However, in spite of its limitations
as an approximation to BMA*, the heuristics which
motivate Occam’s Window are intuitively very ap-
pealing. Perhaps it would simply be appropriate to
treat and interpret BMA under Occam’s Window as
a conditional Bayes procedure.

4. INFERENCE WITH BMA

In their examples, the authors carefully illustrate
the inferential potential of BMA. Compared to stan-
dard frequentist inferences, the Bayesian answers
are much more natural because they directly ad-
dress questions of real interest. A statement like
P�β �= 0 �D� = 50% seems more understandable
and relevant than a statement like “the p-value
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is .05 conditionally on a selected model.” However,
in spite of their appeal, the posterior probabilities
must be cautiously interpreted because of their de-
pendence on a complicated prior formulation which
is in many ways arbitrary. I worry that consumers
of such analyses may be misled by understanding
P�β �= 0 �D� = 80% in a frequentist sense. I won-
der what guidance the authors would give to such a
consumer.
Sounding another cautionary note, I believe there

is a temptation to use the finding of predictive im-
provement to justify both the prior formulation and
the derived Bayesian inference. One has to be wary
of such justification because BMA yields predictive
improvements under such a wide variety of priors.
On the other hand, useful inferential justification
can be obtained by checks for predictive calibration
such as the cross validation assessment of predictive

coverage which appears in Section 7.2.3. It would
have also been useful to perform prior sensitivity
analyses, to see how the Bayesian inferential state-
ments in Section 7 held up as the priors were varied.
Finally, I would like to point out the obvious: that

BMA inferences are necessarily conditional on the
selected model class. BMA addresses model uncer-
tainty within the selected class, but it does not
address the uncertainty of model class selection.
Even if one combined model classes or averaged over
model classes, there would always be model classes
left out. Furthermore, continual expansion of the
model space would at some point begin to include
many redundant or irrelevant models, and would
begin to diminish predictive performance. Although
BMA is a wonderful approach to the problem of ac-
counting for model uncertainty, it can never com-
pletely avoid the selection dilemma.

Rejoinder
Jennifer A. Hoeting, David Madigan, Adrian E. Raftery and Chris T. Volinsky

Bayesian model averaging is a very active area,
and Merlise Clyde, David Draper and Ed George are
three of the researchers who have contributed the
most to the area in the past five years. We are very
grateful to them for their discussions.
In addition to making penetrating and useful

points about our paper, they have provided addi-
tional insights here that take the field forward.
George’s intuitive explanation of the success of BMA
in predictive performance provides a useful and dif-
ferent perspective. Granger and Newbold (1977) had
already found that weighted averages of time series
forecasts were better than the component forecasts
that made them up, and that this result was ro-
bust to the weights used; George’s comment also
suggests a possible explanation of their empirical
result. Clyde’s demonstration that MC3 and SSVS
can be viewed as special cases of reversible jump
MCMC is a striking unifying result. We would also
like to call attention to Clyde’s (1999b) appealing
displays of BMA results, which are a real contribu-
tion to the field.

1. PARAMETER PRIORS

Clyde and George both discuss the specification
of priors for the model parameters, and this is a
vital part of the technology. As George points out,

it is often desirable to have priors that are rela-
tively uninformative and also robust in the sense
that conclusions are qualitatively insensitive to rea-
sonable changes in the priors. For Bayesian estima-
tion, this is often achieved using improper priors,
but, as George comments, for BMA this leads to
arbitrary norming constants that complicate mat-
ters. Our preference is to avoid improper priors in
this context, and instead to use priors that are suffi-
ciently spread out but remain proper. There are now
several approaches to finding such priors that seem
to work well in specific model classes.
The technology is now available to implement

BMA with fairly general priors. For many models,
the Laplace method can give accurate approxima-
tions to integrated likelihoods (Raftery, 1996a). If
estimation is carried out using MCMC, good meth-
ods are now available for calculating integrated like-
lihoods from MCMC output (e.g., Raftery, 1996b;
DiCiccio et al., 1997; Oh, 1999).
For BMA, it is desirable that the prior on the

parameters be spread out enough that it is rela-
tively flat over the region of parameter space where
the likelihood is substantial (i.e., that we be in the
“stable estimation” situation described by Edwards,
Lindman and Savage, 1963). It is also desirable that
the prior not be much more spread out than is neces-
sary to achieve this. This is because the integrated
likelihood for a model declines roughly as σ−d as
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σ becomes large, where σ is the prior standard de-
viation and d is the number of free parameters in
the model. Thus highly spread out priors tend to
over-penalize larger models.
This suggests the use of data-dependent proper

priors. While this sounds at first like a contradiction
in terms, in fact it can be viewed as an approxima-
tion to the (subjective) prior of someone who knows
just a little about the matter at hand. Wasserman
(1998) has shown that data-dependent priors can
have optimality properties, leading to better perfor-
mance than any data-independent prior in some sit-
uations.
One proposal along these lines is Raftery’s (1996a)

reference set of proper priors for generalized linear
models; this is calculated automatically by the glib
software (http://lib.stat.cmu.edu/S/glib). This speci-
fies data-dependent priors that are as concentrated
as possible while remaining in the stable estima-
tion situation and have minimal impact on ratios
of posterior model probabilities when both nested
and nonnested models are being compared. A simi-
lar idea was implemented for linear regression mod-
els by Raftery, Madigan and Hoeting (1997).
A second such proposal is the unit information

prior (UIP), which is a multivariate normal prior
centered at the maximum likelihood estimate with
variance matrix equal to the inverse of the mean
observed Fisher information in one observation. Un-
der regularity conditions, this yields the simple BIC
approximation given by equation (13) in our paper
(Kass and Wasserman, 1995; Raftery, 1995).
The unit information prior, and hence BIC, have

been criticized as being too conservative (i.e., too
likely to favor simple models). Cox (1995) suggested
that the prior standard deviation should decrease
with sample size. Weakliem (1999) gave sociological
examples where the UIP is clearly too spread out,
and Viallefont et al. (1998) have shown how a more
informative prior can lead to better performance of
BMA in the analysis of epidemiological case-control
studies. The UIP is a proper prior but seems to pro-
vide a conservative solution. This suggests that if
BMA based on BIC favors an “effect,” we can feel on
solid ground in asserting that the data provide ev-
idence for its existence (Raftery, 1999). Thus BMA
results based on BIC could be routinely reported
as a baseline reference analysis, along with results
from other priors if available.
A third approach is to allow the data to esti-

mate the prior variance of the parameters. Lind-
ley and Smith (1972) showed that this is essen-
tially what ridge regression does for linear regres-
sion, and Volinsky (1997) pointed out that ridge
regression has consistently outperformed other es-
timation methods in simulation studies. Volinsky

(1997) proposed combining BMA and ridge regres-
sion by using a “ridge regression prior” in BMA. This
is closely related to empirical Bayes BMA, which
Clyde and George (1999) have shown to work well
for wavelets, a special case of orthogonal regression.
Clyde, Raftery, Walsh and Volinsky (2000) show that
this good performance of empirical Bayes BMA ex-
tends to (nonorthogonal) linear regression.

2. PRIOR MODEL PROBABILITIES

In our examples, we have used prior model prob-
abilities that are the same for each model. In the
by now relatively extensive experience that we de-
scribe and cite in our paper, we have found this
to yield good performance. Usually, the (integrated)
likelihood on model space seems to be well enough
behaved and concentrated enough that the results
are insensitive to moderate changes away from 1/2
in the πj in our equation (16); πj = 1/2 corresponds
to the uniform prior. The uniform prior has the ad-
vantage of being simple, transparent and easy to
explain to clients.
Nevertheless, as George points out, it may be pos-

sible to obtain better performance with other priors.
Madigan, Gavrin and Raftery (1995) showed how
elicited informative priors can lead to improved pre-
dictive performance for BMA in a clinical context.
Also, Clyde and George have both shown in their
writings how empirical Bayes estimation of the πj

hyperparameters in (16) can yield improvements.
An issue raised by all three discussants is “dilu-

tion,” which arises in regression when independent
variables are highly correlated. SupposeX1 andX2
are highly correlated regressors, and that both (indi-
vidually) are highly predictive of Y. BMA typically
considers four models: M0, the null model, M1 
�X1�,M2  �X2� andM3  �X1�X2�. With very high
correlations, pr�M1 �D� + pr�M2 �D� + pr�M3 �D�
would be close to 1, and pr�M1 �D� ≈ pr�M2 �D�.
The discussants view this as undesirable.
However, there are two different situations here.

The first is whenX1 andX2 correspond to substan-
tively different mechanisms, and it is reasonable to
postulate that one of the mechanisms might be op-
erating and the other not. For example, suppose Y
is one’s occupational attainment as an adult, mea-
sured on a socioeconomic status scale, X1 is one’s
mother’s education andX2 is one’s (parents’) family
income (Featherman and Hauser, 1977).X1 andX2
are highly correlated, but the mechanisms by which
they might impact Y are quite different, so all four
models are plausible a priori. The posterior model
probabilities are saying that at least one of X1 and
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X2 has an effect on Y, but that the data cannot
tell us whether the effect is due to one, the other,
or both. This seems like a reasonable summary of
what the data are saying.
Clyde makes the important point that simple in-

spection of marginal posterior probabilities of pa-
rameters being nonzero might obscure this message.
It would seem useful to supplement displays like our
Table 1 with diagnostics showing groups of variables
of which only one usually appears at a time.
The second situation is when there is a sin-

gle mechanism (e.g., pollution causes deaths, as in
Clyde and DeSimone-Sasinowska, 1997), but sev-
eral of the Xj’s are measures of the same mecha-
nism. Then regression itself can be misleading, and
so, a fortiori, can BMA. A solution to this seems to
be to recognize that the independent variable of in-
terest is really a latent construct (e.g., “pollution”)
with multiple indicators, and to use something like
a LISREL-type model (Bollen, 1989). BMA and
Bayesian model selection can still be applied in this
context (e.g., Hauser and Kuo, 1998).

3. OCCAM’S WINDOW

Madigan and Raftery (1994) had two motivations
for introducing Occam’s window. The first is that
it represents scientific practice in that models that
have been clearly discredited do get discarded in sci-
entific research; by this argument Occam’s window
is preferable in principle to full BMA, or BMA∗, as
George calls it.
The second motivation is that Occam’s window

might provide a good approximation to BMA∗. Clyde
and George cast doubt on this argument, and in-
deed we know of no formal theoretical support for
it. However, while the biases that Clyde and George
mention may exist in principle, they seem small in
practice. We have found Occam’s window to provide
a surprisingly good approximation to the posterior
effect probabilities from BMA∗ in all the applica-
tions we have worked on. (Of course, Occam’s win-
dow overestimates the actual posterior model prob-
abilities of the models it includes, but it preserves
ratios of these probabilities.) For example, Table 1
shows the posterior effect probabilities from the
crime data analyzed by Raftery, Madigan and Hoet-
ing (1997) from both Occam’s window and BMA∗.
The differences are small (and not always in the di-
rection that Clyde suggests), and they are typical of
what we have seen in many applications.
Clyde raises some excellent questions about the

implementation of Occam’s window when there are
many highly correlated variables. When the high
correlation arises from the fact that several vari-
ables are being used as measurements of the same

underlying latent construct, then using a LISREL-
type model to account for this explicitly would re-
move the problem with Occam’s window, as well as
being more faithful to the science. When the corre-
lated variables do represent different mechanisms,
Occam’s window is likely to include models that con-
tain some but not all of these variables, and it could
be argued that this is a reasonable representation
of the uncertainty given the data.

4. INTERPRETATION

Draper raises the perennial issue of whether BMA
really amounts to combining “apples and oranges,”
and hence is invalid. This arises in the regression
context, where it is often suggested that the coef-
ficient of X1 in the regression of Y on X1 alone
is inherently different from the coefficient of X1 in
the regression of Y on X1 and X2, and hence they
should never be combined.
One way of thinking about this is that, in the

regression context, BMA can be viewed as standard
Bayesian inference for just one model, the full model
in which all variables are included. The twist is that
the prior allows for the possibility that some of the
coefficients might be equal to zero (or, essentially
equivalently, close to zero). This is desirable statis-
tically, as setting unnecessary parameters to zero
can lead to better estimates. It also often represents
scientists’ views. Once we recast the way we think
of BMA this way, in terms of just one model, the
“apples and oranges” problem disappears.
As Draper points out, in our equations (1)–(3),

� needs to have the same meaning in all models.
But precisely what does this mean? A sufficient con-
dition would seem to be that � be an observable
quantity that could be predicted. This would include
many regression coefficients if we allow quantities
of interest that could be observed “asymptotically,”
that is, almost exactly given a very large new data
set of size nnew, exchangeable with the one at hand.
For example, if X1 and X2 are regressors for Y and
can take only the values 0 and 1, and if Ȳnew

ij is
the mean of the values of Y in the new data set for
which X1 = i and X2 = j, then

β1 = 1
2

(
Ȳnew

21 − Ȳnew
11

)
+ 1

2

(
Ȳnew

22 − Ȳnew
12

)+Op

(
n−1/2new

)
�

for both the models M1  �X1� and M2  �X1�X2�.
Thus making inference about β1 from BMA based
on M1 and M2 would seem valid, because β1 is
(asymptotically) an observable quantity, and its pos-
terior distribution is also a predictive distribution.
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Table 1
Posterior effect probabilities (%) for crime data

Predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Occam’s window 73 2 99 64 36 0 0 12 53 0 43 1 100 83 0
BMA∗ (via MC3) 79 17 98 72 50 6 7 23 62 11 45 30 100 83 22

Source: Raftery, Madigan and Hoeting (1997)

Based on this reasoning, BMA seems likely to
be valid for many regression coefficients. However,
its validity for nonlinear effects and interactions
is more problematic. Restricting BMA to quantities
that can be interpreted (perhaps asymptotically) as
observables seems a good way to stay out of trouble.

5. OTHER ISSUES

Clyde and Draper point out the importance of
model checking, and we strongly agree. All the mod-
els considered might be poor, and then combining
them will not do much good. Model diagnostics such
as residual analysis and posterior predictive checks
(Gelman et al., 1996) applied to the best models,
are useful for diagnosing this situation. Our view is
that such diagnostics are useful in an exploratory
sense for suggesting when the models may be inad-
equate and how they should be improved. However,
the tests that come with such diagnostics are usu-
ally based on P-values or nearly equivalent quanti-
ties, and often multiple such tests are carried out, at
least implicitly. Thus, we feel that such tests should
not be used in a formal manner to “reject” the mod-
els under consideration. Rather, they should be used
to suggest better models, and these models should
then be compared with the ones first thought of
using Bayes factors and BMA (Kass and Raftery,
1995).
Draper says that model choice is a decision prob-

lem, and that the use to which the model is to be put
should be taken into account explicitly in the model
selection process. This is true, of course, but in prac-
tice it seems rather difficult to implement. This was
first advocated by Kadane and Dickey (1980) but
has not been done much in practice, perhaps be-
cause specifying utilities and carrying out the full
utility maximization is burdensome, and also intro-
duces a whole new set of sensitivity concerns. We
do agree with Draper’s suggestion that the analysis
of the body fat data would be enhanced by a cost–
benefit analysis which took account of both predic-
tive accuracy and data collection costs.
In practical decision-making contexts, the choice

of statistical model is often not the question of pri-
mary interest, and the real decision to be made is
something else. Then the issue is decision-making

in the presence of model uncertainty, and BMA pro-
vides a solution to this. In equation (1) of our article,
let � be the utility of a course of action, and choose
the action for which E�� �D� is maximized.
Draper does not like our Figure 4. However, we

see it as a way of depicting on the same graph the
answers to two separate questions: is wrist circum-
ference associated with body fat after controlling for
the other variables? and if so, how strong is the
association? The posterior distribution of β13 has
two components corresponding to these two ques-
tions. The answer to the first question is “no” (i.e.,
the effect is zero or small) with probability 38%,
represented by the solid bar in Figure 4. The an-
swer to the second question is summarized by the
continuous curve. Figure 4 shows double shrinkage,
with both discrete and continuous components. The
posterior distribution of β13, given that β13 �= 0,
is shrunk continuously towards zero via its prior
distribution. Then the posterior is further shrunk
(discretely this time) by taking account of the prob-
ability that β13 = 0. The displays in Clyde (1999b)
convey essentially the same information, and some
may find them more appealing than our Figure 4.
Draper suggests the use of a practical significance

caliper and points out that for one choice, this gives
similar results to BMA. Of course the big question
here is how the caliper is chosen. BMA can itself
be viewed as a significance caliper, where the choice
of caliper is based on the data. Draper’s Table 1
is encouraging for BMA, because it suggests that
BMA does coincide with practical significance. It
has often been observed that P values are at odds
with “practical” significance, leading to strong dis-
tinctions being made in textbooks between statis-
tical and practical significance. This seems rather
unsatisfactory for our discipline: if statistical and
practical significance do not at least approximately
coincide, what is the use of statistical testing? We
have found that BMA often gives results closer to
the practical significance judgments of practitioners
than do P-values.
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