
CS 270 – Backpropagation 1

MLPs with Backpropagation Learning

CS 270 – Backpropagation 2

Multilayer Nets?
Linear Systems

F(cx) = cF(x)

F(x+y) = F(x) + F(y)

 I N M Z

Z = (M(NI)) = (MN)I = PI

CS 270 – Backpropagation 3

Early Attempts
Committee Machine

 R a n d o m ly Connected V o t e T a k ing TLU
 (Adaptive) (non-adaptive)
 Majority Logic

"Least Perturbation Principle"

For each pattern, if incorrect, change just enough weights
into internal units to give majority. Choose those closest to
their threshold (LPP & changing undecided nodes)

CS 270 – Backpropagation 4

Perceptron (Frank Rosenblatt)
Simple Perceptron

 S - U n i t s A - u n i t s R - u n i t s
 (S e n s o r) (Associat ion) (Response)
 Random to A-units
 fixed weights adaptive

Variations on Delta rule learning
Why S-A units?

CS 270 – Backpropagation 5

Backpropagation

l Rumelhart (1986), Werbos (74),…, explosion of neural net
interest

l Multi-layer supervised learning
l Able to train multi-layer perceptrons (and other topologies)
l Commonly uses differentiable sigmoid function which is

the smooth (squashed) version of the threshold function
l Error is propagated back through earlier layers of the

network
l Very fast efficient way to compute gradients!

CS 270 – Backpropagation 6

Multi-layer Perceptrons trained with BP

l Can compute arbitrary mappings
l Training algorithm less obvious
l First of many powerful multi-layer learning algorithms

CS 270 – Backpropagation 7

Responsibility Problem

Output 1
Wanted 0

CS 270 – Backpropagation 8

Multi-Layer Generalization

CS 270 – Backpropagation 9

Multilayer nets are universal function
approximators

l Input, output, and arbitrary number of hidden layers

l 1 hidden layer sufficient for DNF representation of any Boolean
function - One hidden node per positive conjunct, output node set to
the “Or” function

l 2 hidden layers allow arbitrary number of labeled clusters
l 1 hidden layer sufficient to approximate all bounded continuous

functions
l 1 hidden layer was the most common in practice, but recently… Deep

networks show excellent results!

CS 270 – Backpropagation 10

x1 x 2

n1 n2

z

x 1

x 2

(1,0)(0,0)

(0,1) (1,1)

x1

x 2

(1,0)(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1) (1,1)

n2

n1

CS 270 – Backpropagation 11

l Multi-layer supervised learner
l Gradient descent weight updates
l Sigmoid activation function (smoothed threshold logic)

l Backpropagation requires a differentiable activation
function

Backpropagation

CS 270 – Backpropagation 12

1

0

.01

.99

CS 270 – Backpropagation 13

Multi-layer Perceptron (MLP) Topology

Input Layer Hidden Layer(s) Output Layer

j

k

k

k

i

i

i

i

CS 270 – Backpropagation 14

Backpropagation Learning Algorithm

l Until Convergence (low error or other stopping criteria) do
– Present a training pattern
– Calculate the error of the output nodes (based on T - Z)
– Calculate the error of the hidden nodes (based on the error of the

output nodes which is propagated back to the hidden nodes)
– Continue propagating error back until the input layer is reached
– Then update all weights based on the standard delta rule with the

appropriate error function d

 Dwij = C dj Zi

CS 270 – Backpropagation 15

Activation Function and its Derivative

l Node activation function f(net) is commonly the sigmoid

l Derivative of activation function is a critical part of the
algorithm

jnetjj e
netfZ −+

==
1
1)(

f '(net j) = Z j (1− Z j)

Net

0

.25

0

Net

0

1

0

.5

-5 5

-5 5

CS 270 – Backpropagation 16

j

k

k

k

i

i

i

i

Backpropagation Learning Equations

Node] [Hidden)(')(

Node][Output)(')(

j
k

jkkj

jjjj

ijij

netfw

netfZT
ZCw

∑=
−=

=Δ

δδ

δ

δ

CS 270 – Backpropagation 17

jnetjj e
netfZ −+

==
1
1)(

f '(net j) = Z j (1− Z j)

Node] [Hidden)(')(

Node][Output)(')(

j
k

jkkj

jjjj

ijij

netfw

netfZT
ZCw

∑=
−=

=Δ

δδ

δ

δ
1

4 5

2

6

3
+1

+1

7

Assume the following 2-2-1 MLP has all weights initialized to .5. Assume a
learning rate of 1. Show the updated weights after training on the pattern .9 .6 -> 0.
Show all net values, activations, outputs, and errors. Nodes 1 and 2 (input nodes)
and 3 and 6 (bias inputs) are just placeholder nodes and do not pass their values
through a sigmoid.

Backpropagation Learning Example

18

jnetjj e
netfZ −+

==
1
1)(

f '(net j) = Z j (1− Z j)

1

4 5

2

6

3
+1

+1

7

net4 = .9 * .5 + .6 * .5 + 1 * .5 = 1.25
net5 = 1.25
z4 = 1/(1 + e-1.25) = .777
z5 = .777
net7 = .777 * .5 + .777 * .5 + 1 * .5 = 1.277
z7 = 1/(1 + e-1.277) = .782
d7 = (0 - .782) * .782 * (1 - .782) = -.133
d4 = (-.133 * .5) * .777 * (1 - .777) = -.0115
d5 = -.0115

Backpropagation Learning Example

.6.9

w14 = .5 + (1 * -. 0115 * .9) = . 4896
w15 = .4896
w24 = .5 + (1 * -. 0115 * .6) = . 4931
w25 = .4931
w34 = .5 + (1 * -. 0115 * 1) = .4885
w35 = .4885
w47 = .5 + (1 * -.133 * .777) = .3964
w57 = .3964
w67 = .5 + (1 * -.133 * 1) = .3667

Node] [Hidden)(')(

Node][Output)(')(

j
k

jkkj

jjjj

ijij

netfw

netfZT
ZCw

∑=
−=

=Δ

δδ

δ

δ

CS 270 – Backpropagation

Backprop Homework

1. For your homework, update the weights for a second
pattern -1 .4 -> .2. Continue using the updated weights
shown on the previous slide. Show your work like we did
on the previous slide.

2. Then go to the link below: Neural Network Playground
using the tensorflow tool and play around with the BP
simulation. Try different training sets, layers, inputs, etc.
and get a feel for what the nodes are doing. You do not
have to hand anything in for this part.

l http://playground.tensorflow.org/

CS 270 – Backpropagation 19

http://playground.tensorflow.org/

CS 270 – Backpropagation 20

Activation Function and its Derivative

l Node activation function f(net) is commonly the sigmoid

l Derivative of activation function is a critical part of the
algorithm

jnetjj e
netfZ −+

==
1
1)(

f '(net j) = Z j (1− Z j)

Net

0

.25

0

Net

0

1

0

.5

-5 5

-5 5

CS 270 – Backpropagation 21

Inductive Bias & Intuition
l Intuition

– Manager/Worker Interaction
– Gives some stability

l Node Saturation - Avoid early, but all right later
– With small weights all nodes have low confidence at first (linear range)
– When saturated (confident), the output changes only slightly as the net

changes. An incorrect output node will still have low error.
– Start with weights close to 0. Once nodes saturated, hopefully have

learned correctly, others still looking for their niche.
– Saturated error even when wrong? – Multiple TSS drops
– Don’t start with equal weights (can get stuck), random small

Gaussian/uniform with 0 mean
l Inductive Bias

– Start with simple net (small weights, initially linear changes)
– Gradually build a more complex surface until accurate enough without

getting too complex

CS 270 – Backpropagation 22

Multi-layer Perceptron (MLP) Topology

Softmax Output Layer Activation
l For classification problems it is increasingly popular to use the softmax

activation function, just at the output layer
l Softmax (softens) 1 of n targets to mimic a probability vector for the output

nodes

l If there were 3 output nodes with net values 0, .5, and 1 then the outputs for
each node would be 1/5.37, 1.65/5.37, 2.72/5.37 = .18, .31, .51 which sums to
1 and can be considered as probability estimates

l All the hidden nodes still do a standard activation function such as logistic,
hyperbolic tangent, or ReLU

l Sklearn automatically uses softmax at the output layer for MLP classification,
and you choose the activation function for hidden nodes

CS 270 – Backpropagation 23

f (net j) =
enet j

eneti
i=1

n
∑

Cross-Entropy and Softmax
l For classification it is increasingly popular to use the cross-entropy loss function.
l Cross entropy measures the difference (in entropy) between two distributions.
l Cross entropy seeks to to find the maximum likelihood hypotheses under the

assumption that the observed (1 of n) Boolean outputs is a probabilistic function of the
input instance which fits what classification does. Maximizing likelihood can be cast as
the equivalent minimizing of the negative log likelihood.

l We must recalculate the gradient weight update equation when we use new
activation/loss functions. For Softmax with Cross Entropy, Gradient/Error on the
output is just (t-z), with no f '(net). The exponent of softmax is unraveled by the ln of
cross entropy.

l The hidden layers still update as usual and include f '(net)
l Sklearn always uses this approach for MLP classification

CS 270 – Backpropagation 24

LossCrossEntopy = − ti
i=1

n

∑ ln(zi)

t z CE

0 ? 0

1 1 0

1 .9 .11

1 .5 .69

1 .1 2.30

Regression with MLP/BP

l For regression in MLPs we use the sum-squared error (L2) loss
function which seeks the maximum likelihood hypothesis under
the assumption that the training data can be modeled by
normally distributed noise added to the target function value.
More natural for regression than for classification.

l Output nodes use a linear activation (i.e. identity function which
just passes the net value through). This naturally supports
unconstrained regression.

– Don’t typically normalize output
l The output error is still (t - z) f '(net), but since f '(net) is 1 for

the linear activation, the output error is just (target – output)
l Hidden nodes still use a non-linear activation function (such as

logistic) with the standard f '(net)
l This is how sklearn always does MLP regression

CS 270 – Backpropagation 25

CS 270 – Backpropagation 26

Local Minima

l Most algorithms which have difficulties with simple tasks
get much worse with more complex tasks

l Good news with MLPs
l Many dimensions make for many descent options
l Local minima more common with simple/toy problems,

rare with larger problems and larger nets
l Even if there are occasional minima problems, could

simply train multiple times and pick the best
l Some algorithms add noise to the updates to escape

minima

Local Minima and Neural Networks
l Neural Network can get stuck in local minima for small

networks, but for most large networks (many weights),
local minima rarely occur in practice

l This is because with so many dimensions of weights it is
unlikely that we are in a minima in every dimension
simultaneously – almost always a way down

27CS 270 – Backpropagation

Learning Rate
l Learning Rate - Relatively small (.01 - .5 common), if too

large BP will not converge or be less accurate, if too small
it is just slower with no accuracy improvement as it gets
even smaller

l Gradient – only where you are, too big of jumps?

CS 270 – Backpropagation 28

Learning Rate

CS 270 – Backpropagation 30

Number of Hidden Nodes
l How many needed is a function of how hard the task is
l Common to use one fully connected hidden layer. Initial number could

be ~2n hidden nodes where n is the number of inputs.
l In practice we train with a small number of hidden nodes, then keep

doubling, etc. until no more significant improvement on test sets
– Too few will underfit
– Too many nodes can make learning slower and could overfit

l Having somewhat too many hidden nodes is preferable if using reasonable
regularization; avoids underfit and should ignore unneeded nodes

l Each output and hidden node should have its own bias weight

j

k

k

k

i

i

i

i

CS 270 – Backpropagation 31

Momentum
l Simple speed-up modification (type of adaptive learning rate)

Dwij(t) = Cdj zi + a Dwij(t-1)
l Save Dwij(t) for each weight to be used as next Dwij(t-1)
l Weight update maintains momentum in the direction it has been going

– Faster in flatter parts of error surface
– Significant speed-up, common value a ≈ .9
– Effectively increases learning rate in areas where the gradient is

consistently the same sign. (Which is a common approach in adaptive
learning rate methods which we will mention later).

l These types of terms make the algorithm less pure in terms of gradient
descent. In fact, for SGD (Stochastic Gradient Descent), is like a mini-
batch to average gradient

– Not an issue in terms of local minima (why?)

Error Surface

CS 270 – Backpropagation 32

CS 270 – Backpropagation 33

Hyperparameter Selection

l LR (e.g. .1)
l Momentum – (.5 … .99)
l Connectivity: fully connected between layers
l Number of hidden nodes: Problem dependent
l Number of layers: 1 (common) or 2 hidden layers which are usually

sufficient for good results, attenuation makes learning very slow –
modern deep learning approaches show significant improvement using
many layers and many hidden nodes

l Manual CV can be used to set hyperparameters: trial and error runs
– Often sequential: find one hyperparameter value with others held constant, freeze it,

find next hyperparameter, etc.

l Hyperparameters could be learned by the learning algorithm in which
case you must take care to not overfit the training data – always use a
cross-validation technique to measure hyperparameters

Automated Hyper-Parameter Search

l Can also do an automated search: Grid, Random, others
l User chooses which CV technique to use for each trial
l Grid Search: User chooses a set of possible parameter values and

grid search exhaustively tries all possibilities
– #hidden_nodes: [6, 12, 24, 48], LR: [.001, .01, .1], …

l Random Search: User chooses a distribution over chosen
hyperparameters and the space is sampled randomly

– #hidden_nodes: uniform[5, 50], LR: loguniform[.001, .1], Activation:
[logistic, relu, tanh] … (If no distribution given, then uniformly samples)

– User chooses how many iterations to try (better time control)
l Some advantages of Random search

– Grid becomes very slow for lots of parameters – too many runs
– Grid can only choose from specified parameter values, no tweeners

l You will try Grid Search and Random Search in your lab

CS 270 – Backpropagation 34

CS 270 – Backpropagation 35

Stopping Criteria and Overfit Avoidance

l More Training Data (vs. overtraining - One epoch in the limit)
l Validation Set - save weights which do best job so far on the validation set.

Keep training for enough epochs to be sure that no more improvement will
occur (e.g. once you have trained m epochs with no further improvement
(bssf), stop and use the best weights so far, or retrain with all data).
– Note: If using N-way CV with a validation set, do n runs with 1 of n data partitions as a

validation set. Save the number of training updates for each run. To get a final model you can
train on all the data and stop after the average number of training updates.

l Specific BP techniques for avoiding overfit
– Less hidden nodes NOT a great approach because may underfit
– Weight decay (regularization), Adjusted Error functions (deltas .9/.1, CB), Dropout

Epochs

SSE
Validation/Test Set

Training Set

CS 270 – Backpropagation 36

Validation Set

l Often you will use a validation set (separate from the training or
test set) for stopping criteria, etc.

l In these cases you should take the validation set out of the
training set

l For example, you might use the random test set method to
randomly break the original data set into 80% training set and
20% test set. Independent and subsequent to the above split you
would take n% (10-20%) of the training set to be a validation set
for that particular training run.

l You will usually shuffle the weight training part of your training
set for each epoch, but you use the same unchanged validation
set throughout the entire training

– Never use an instance in the VS which has been used to train weights
– Sklearn does all this for you by just setting the early_stopping = True

Backpropagation Regularization
l How to avoid overfit – Keep the model simple

– Keep decision surfaces smooth
– Smaller overall weight values lead to simpler models with less overfit

l Early stopping with validation set is a common approach to avoid
overfitting (since weights don't have time to get too big)

l Could make complexity an explicit part of the loss function
– Then we don’t need early stopping (though sometimes one is better than

the other and we can even do both simultaneously)
l Regularization approach: Model (h) selection

– Minimize F(h) = Error(h) + λ·Complexity(h)
– Tradeoff accuracy vs complexity

l Two common approaches
– Lasso (L1 regularization)
– Ridge (L2 regularization)

CS 270 – Backpropagation 37

L1 (Lasso) Regularization
l Standard BP update is based on the derivative of the loss

function with respect to the weights. We can add a model
complexity term directly to the loss function such as:

– L(w) = Error(w) + λS|wi|
– λ is a hyperparameter which controls how much we value model

simplicity vs training set accuracy
– Gradient of L(w): Gradient of Error(w) + λ
– To make it gradient descent we negate the Gradient: (-Ñerror(w) -λ)

l This is also called weight decay
l Gradient of Error is just equations we have used if Error(w) is TSS, but

may differ for other error functions

l Common values for lambda are 0, .001, .01, .03, etc.
l Weights that really should be significant stay large enough, but

weights just being nudged by a few data instances go to 0

CS 270 – Backpropagation 38

L2 (Ridge) Regularization

l L(w) = Error(w) + λSwi2
l -Gradient of L(w): -Gradient of Error(w) - 2λwi
l Regularization portion of weight update is scaled by weight

value (fold 2 into λ)
– Decreases change when weight small (<0), otherwise increases
– λ is % of weight change, .03 means 3% of the weight is decayed each

time
l L1 vs L2 Regularization

– L1 drives many weights all the way to 0 (Sparse representation and
feature reduction)

– L1 more robust to large weights (outliers), while L2 makes larger
decay with large weights

– L1 leads to simpler models, but L2 often more accurate with more
complex problems which require a bit more complexity

CS 270 – Backpropagation 39

BP Lab

l Go over Lab together

CS 270 – Backpropagation 40

Rectified Linear Units

l BP can work with any differentiable non-linear activation function (e.g. sine)
l ReLU is common these days especially with deep learning: f(x) = Max(0,x)

– More efficient computation: Only comparison, addition and multiplication
– f '(net) is 0 or constant, just fold into learning rate

l Leaky ReLU f(x) = x if x > 0, else ax, where 0 ≤ a <= 1, so for net < 0 the
derivate is not 0 and can do some learning (does not “die”).

– Lots of other variations
l Sparse activation: For example, in a randomly initialized networks, only

about 50% of hidden units are activated (having a non-zero output)
l Not differentiable but we just “cheat” and include the discontinuity point

with either side of the linear part of the ReLU function – piecewise linear

CS 270 – Backpropagation 41

42

Debugging ML algorithms
l Debugging ML algorithms can be difficult

– Unsure beforehand about what the results should be, differ for different
tasks, data splits, initial random weights, hyperparameters, etc.

– Adaptive algorithm can learn to compensate somewhat for bugs
– Bugs in accuracy evaluation code common – false hopes!

l **Do a small example by hand (e.g. your homework) and make
sure your algorithm gets the exact same results (and accuracy)

l Compare results with our supplied debug and LS examples
l Compare results (not code, etc.) with classmates
l Compare results with a published version of the algorithm (e.g.

sklearn), won’t be exact because of different training/test splits,
etc.

– Use Zarndt’s thesis (or other publications) to get a ballpark feel of how
well you should expect to do on different data sets.
http://axon.cs.byu.edu/papers/Zarndt.thesis95.pdf

CS 270 – Backpropagation

http://axon.cs.byu.edu/papers/Zarndt.thesis95.pdf

CS 270 – Backpropagation 43

What are the Hidden Nodes Doing?
l Higher order features vs 1st order features (perceptron/Us)

– The real power of machine learning (exponential # of variations)
l Hidden nodes discover new higher order features which

are fed into subsequent layers
l Zipser - Linguistics
l Compression

CS 270 – Backpropagation 44

Batch Update
l With On-line (stochastic) update we update weights after every

pattern
l With Batch update we accumulate the changes for each weight,

but do not update them until the end of each epoch
l Batch update gives a correct direction of the gradient for the

entire data set, while on-line could do some weight updates in
directions quite different from the average gradient of the entire
data set

– Based on noisy instances and also just that specific instances will not
usually be at the average gradient

l Proper approach? - Conference experience/Parallel experience
– Most (including us) assumed batch more appropriate, but batch/on-line

a non-critical decision with similar results
l We show that batch is less efficient

– Wilson, D. R. and Martinez, T. R., The General Inefficiency of Batch
Training for Gradient Descent Learning, Neural Networks, vol. 16, no. 10,
pp. 1429-1452, 2003

CS 270 – Backpropagation 45

Direction of gradient

True
underlying
gradient

Point of evaluation

CS 270 – Backpropagation 46

Localist vs. Distributed Representations

l Is Memory Localist (“grandmother cell”) or distributed
l Output Nodes

– One node for each class (classification) – “one-hot”
– One or more graded nodes (classification or regression)
– Distributed representation

l Input Nodes
– Normalize real and ordered inputs
– Nominal Inputs - Same options as above for output nodes

l Hidden nodes - Can potentially extract rules if localist
representations are discovered. Difficult to pinpoint and
interpret distributed representations.

CS 270 – Backpropagation 47

Application Example - NetTalk

l One of first application attempts
l Train a neural network to read English aloud
l Input Layer - Localist representation of letters and punctuation
l Output layer - Distributed representation of phonemes
l 120 hidden units: 98% correct pronunciation

– Note steady progression from simple to more complex sounds

CS 270 – Backpropagation 48

Adaptive Learning Rate Approaches

l Momentum is a type of adaptive learning rate mechanism
Dwij(t) = Cdj zi + a Dwij(t-1)

l Adaptive Learning rate methods
– Start LR small
– As long as weight change is in the same direction, increase a bit (e.g. scalar

multiply > 1, etc.)
– If weight change changes directions (i.e. sign change) reset LR to small,

could also backtrack for that step, or …

Speed up variations of SGD
l Use mini-batch rather than single instance for better gradient estimate

– Sometimes helpful if SGD variation more sensitive to bad gradient,
and also for some parallel (GPU) implementations.

l Adaptive learning rate approaches (and other speed-ups) are often used
for deep learning since there are so many training updates

– Standard Momentum
l Note that these approaches already do an averaging of gradient, also making mini-

batch less critical
– Nesterov Momentum – Calculate point you would go to if using normal

momentum. Then, compute gradient at that point. Do normal update using
that gradient and momentum.

– Rprop – Resilient BP, if gradient sign inverts, decrease it’s individual LR, else
increase it – common goal is faster in the flats, variants that backtrack a step,
etc.

– Adagrad – Scale LRs inversely proportional to sqrt(sum(historical values))
– RMSprop – Adagrad but uses exponentially weighted moving average, older

updates basically forgotten
– Adam (Adaptive moments) –Momentum terms on both gradient and squared

gradient (uncentered variance) (1st and 2nd moments) – updates based on a
moving average of both - Popular

CS 270 – Backpropagation 49

CS 270 – Backpropagation 50

Learning Variations

l Different activation functions - need only be differentiable
l Different objective functions

– Cross-Entropy
– Classification Based Learning

l Higher Order Algorithms - 2nd derivatives (Hessian
Matrix)
– Quickprop
– Conjugate Gradient
– Newton Methods

l Constructive Networks
– Cascade Correlation
– DMP (Dynamic Multi-layer Perceptrons)

Higher order "shortcut"

CS 270 – Backpropagation 51

CS 270 – Backpropagation 52

Classification Based (CB) Learning

Target Actual BP Error CB Error

1 .6 .4*f '(net) 0

0 .4 -.4*f '(net) 0

0 .3 -.3*f '(net) 0

CS 270 – Backpropagation 53

Classification Based Errors

Target Actual BP Error CB Error

1 .6 .4*f '(net) .1

0 .7 -.7*f '(net) -.1

0 .3 -.3*f '(net) 0

CS 270 – Backpropagation 54

Results

l Standard BP: 97.8%

Sample Output:

CS 270 – Backpropagation 55

Results

l Classification Based Training:
 99.1%

Sample Output:

CS 270 – Backpropagation 56

Analysis

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Top Output

Sa

m
pl

es

Correct Incorrect

Network outputs on test set after standard
backpropagation training.

CS 270 – Backpropagation 57

Analysis

1

10

100

1000

10000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Top Output

Sa

m
pl

es
Correct Incorrect

Network outputs on test set after CB training.

Classification Based Models

l CB1: Only backpropagates error on misclassified training
patterns

l CB2: Adds a confidence margin, μ, that is increased
globally as training progresses

l CB3: Learns a confidence Ci for each training pattern
i as training progresses
– Patterns often misclassified have low confidence
– Patterns consistently classified correctly gain confidence
– Best overall results and robustness

CS 270 – Backpropagation 58

CS 270 – Backpropagation 59

Batch Update
l With On-line (stochastic) update we update weights after

every pattern
l With Batch update we accumulate the changes for each

weight, but do not update them until the end of each epoch
l Batch update gives a correct direction of the gradient for

the entire data set, while on-line could do some weight
updates in directions quite different from the average
gradient of the entire data set
– Based on noisy instances and also just that specific instances will

not represent the average gradient
l Proper approach? - Conference experience

– Most (including us) assumed batch more appropriate, but batch/on-
line a non-critical decision with similar results

l We tried to speed up learning through "batch parallelism"

CS 270 – Backpropagation 60

On-Line vs. Batch
Wilson, D. R. and Martinez, T. R., The General Inefficiency of Batch Training for Gradient

Descent Learning, Neural Networks, vol. 16, no. 10, pp. 1429-1452, 2003
l Many people still not aware of this issue – Changing
l Misconception regarding “Fairness” in testing batch vs. on-line with

the same learning rate
– BP already sensitive to LR - why? Both approaches need to make a small

step in the calculated gradient direction – (about the same magnitude)
– With batch need a "smaller" LR since weight changes accumulate

(alternatively divide by |TS|)
– To be "fair", on-line should have a comparable LR??
– Initially tested on relatively small data sets

l On-line update approximately follows the curve of the gradient as the
epoch progresses

l With appropriate learning rate batch gives correct result, just less
efficient, since you have to compute the entire training set for each
small weight update, while on-line will have done |TS| updates

CS 270 – Backpropagation 61

Direction of gradient

True
underlying
gradient

Point of evaluation

CS 270 – Backpropagation 62

CS 270 – Backpropagation 63

CS 270 – Backpropagation 64

CS 270 – Backpropagation 65

CS 270 – Backpropagation 66

0.1
0.1
0.1
0.1
0.01
0.01
0.01
0.01
0.01
0.001
0.001
0.001
0.001
0.0001
0.0001
0.0001
0.0001

1
10

100
1000

1
10

100
1000

20,000
1

100
1000

20,000
1

100
1000

20,000

96.49%
96.13%
95.39%
84.13%
96.49%
96.49%
95.76%
95.20%
23.25%
96.49%
96.68%
96.13%
90.77%
96.68%
96.49%
96.49%
96.31%

21
41
43

4747
27
27
46

1612
4865

402
468
405

1966
4589
5340
5520
8343

Learning
Rate

Batch
Size

Max Word
Accuracy

Training
Epochs

+

+

+

+

Semi-Batch on Digits

CS 270 – Backpropagation 67

On-Line vs. Batch Issues

l Some say just use on-line LR but divide by n (training set size) to get
the same feasible LR for both (non-accumulated), but on-line still does
n times as many updates per epoch as batch and is thus much faster

l True Gradient - We just have the gradient of the training set anyways
which is an approximation to the true gradient and true minima

l Momentum and true gradient - same issue with other enhancements
such as adaptive LR, etc.

l Training sets are getting larger - makes discrepancy worse since we
would do batch update relatively less often

l Large training sets great for learning and avoiding overfit - best case
scenario is huge/infinite set where never have to repeat - just 1 partial
epoch and just finish when learning stabilizes – batch in this case?

l Mini-batches can be useful for algorithms which are sensitive to a bad
gradient direction, and when GPU parallelism gets it for free

CS 270 – Backpropagation 68

Multiple Outputs

l Typical to have multiple output nodes, even with just one
output feature (e.g. Iris data set)

l Would if there are multiple "independent output features"
– Could train independent networks
– Also common to have them share hidden layer

l May find shared features
l Transfer Learning

– Could have shared and separate subsequent hidden layers, etc.
l Structured Outputs
l Multiple Output Dependency? (MOD)

– New research area

CS 270 – Backpropagation 69

Recurrent Networks

l Some problems happen over time - Speech recognition, stock
forecasting, target tracking, etc.

l Recurrent networks can store state (memory) which lets them learn to
output based on both current and past inputs

l Learning algorithms are more complex but are becoming increasingly
better at solving more complex problems (LSTM - more with deep)

l Alternatively, for some problems we can use a larger “snapshot” of
features over time with standard backpropagation learning and
execution (e.g. NetTalk)

Inputt

Hidden/Context Nodes

Outputt
one step
time delay

one step
time delay

CS 270 – Backpropagation 70

MLP/Backpropagation Summary

l Excellent Empirical results
l Scaling – The pleasant surprise

– Local minima very rare as problem and network complexity increase
l Most common neural network approach

– Many other different styles of neural networks (RBF, Hopfield, etc.)
l Hyper-parameters usually handled by trial and error
l Many variants

– Adaptive Parameters, Ontogenic (growing and pruning) learning
algorithms

– Many different learning algorithm approaches
– Recurrent networks
– Deep networks!
– An active research area

